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Abstract 
 As real-time simulations become 
more complex, a single processor is no 
longer sufficient to perform all of the 
necessary computations. It becomes 
desirable to execute independent 
sections of a real-time simulation on 
different processors. The traditional 
approach to utilize multiple processors 
on a symmetric multiprocessor machine 
involves writing a program composed of 
one process per processor that interact 
through shared memory. A program that 
uses treads can utilize multiple 
processors without the overhead of full 
processes or the use of a cumbersome 
shared memory mechanism. This is due 
to the fact that threads implicitly share a 
common address space. A multithreaded 
real-time program is organized as a main 
thread controlling zero or more auxiliary 
teal-time threads. Each processor to be 
used for real-time computations is 
assigned a single auxiliary real-time 
thread. The main thread monitors the 
real-time clock and informs the auxiliary 
threads when the clock ticks. An 
auxiliary thread can also be used to 
monitor and control the simulation via a 
graphical user interface (GUI). These 
object-oriented designs were 
implemented in C++ for the NASA 
Langley Standard Real-Time Simulation 
(LaSRS++) Application Framework. 
 

Introduction 
 
Real-time simulations are continuous 
simulations that have a strict and direct 
correspondence between simulation time 
and real-world time: one unit of time in 
the simulation is equal to one unity of 
time in the real world. This type of 
simulation is usually used to represent or 
study a real dynamic phenomenon as it 
occurs. Real-time control of dynamic 
processes requires a human-in-the-loop 
or simulated controller (e.g. a pilot 
flying a flight simulator). Real-time 
simulations often involve modeling the 
evolution of continuous processes over 
time. This is accomplished by dividing 
time into small fixed intervals and 
solving differential equations at each 
successive interval of time. This type of 
computation is very time critical. It must 
be possible to perform all of the 
necessary computations in the allotted 
amount of time.  
 

As real-time simulations become 
more complex, a single processor is no 
longer sufficient to perform all of the 
necessary computations. It becomes 
desirable to execute independent 
sections of the simulation model on 
different processors. The traditional 
approach to utilizing multiple processors 
on a symmetric multiprocessor machine 
involves writing a program composed of 
one process per processor that interact 



 

 

through shared memory. This involves 
using an explicit shared memory 
mechanism that must be managed by the 
program. This approach also presents a 
problem when using C++ [7] virtual 
functions: virtual functions for a given 
object are only available in the process 
that created the object (i.e., the virtual 
function table is bound to the address 
space of the creator process). 
 
 A program that uses threads can 
utilize multiple processors without the 
overhead of full processes or the use of a 
cumbersome shared memory 
mechanism. This is due to the fact that 
threads implicitly share a common 
address space. Because the virtual 
function tables are bound to the shared 
address space, C++ virtual functions for a 
given object are available in any thread. 
 

Real-Time Simulation 
 

 In order to perform real-time 
simulations, it is necessary to 
synchronize the simulation execution 
with real world time. This is normally 
accomplished by system level software 
that interacts with an external clock. The 
external clock must be accurate and have 
a precision on the order of microseconds 
or even nanoseconds. The system level 
software divides computer operation into 
fixed, equal intervals of time called 
frames.  The simulation code waits for a 
frame to start, performs its 
computations, and informs the system 
level code when it is done. The 
simulation time is incremented by one 
frame time and the cycle repeats. As 
long as the simulation code takes less 
time to execute than a single frame, the 
simulation will continue to operate in 
real-time. 
 

 
Figure 1: real-time frame 

 
 Figure 1 illustrates the concept of 
a frame. They synchronous input period 
of the frame is a variable length of time 
where information from the outside 
world is deposited into the memory 
space of the application code. Similarly, 
during the synchronous output period, 
application information is transferred to 
the outside world. These periods are 
considered synchronous since their 
execution is dependent on the system 
clock for start (input) and stop (output) 
times. The actual code that simulates the 
dynamic system runs during the 
application compute time. 
 If, for some reason, the dynamic 
system code takes longer to execute than 
the allotted application compute time, 
the simulation will have a deterministic 
behavior based on the nature of the real-
time constrain. A hard real-time system 
sill halt with a critical error if the real-
time constraint is violated. A soft real-
time system will allow computations 
longer that a frame and take some 
appropriate action without halting. Flight 
simulations that involve a human-in-the-
loop control mechanism are hard real-
time systems. 
 

Process Model 
 
 The process model is an 
abstraction used by traditional operating 
systems to handle program execution. 
Each process is composed of an 
addressable memory space, a single 
sequence of machine instructions to 



 

 

execute, and other resources maintained 
by the operating system. Each process 
has its own, private address space, 
isolated from all other processes in the 
system. The process model was 
specifically designed in this way to 
allow programmers to write applications 
in isolation, unconcerned with the 
memory usage of other execution 
programs. 
 In a multiprogramming 
environment, several processes can be 
running on the system at the same time. 
Butenhof [1] defines concurrency as 
“things that appear to happen at the same 
time, but which may occur serially.” On 
a uniprocessor system, processes only 
appear to execute concurrently. In 
reality, the operating system is providing 
each executing process a small amount 
of execution time on the CPU. Once this 
time expires, the operating system 
switches to another process to give it 
some time. This switching occurs among 
all running processes to allow them all to 
progress in execution.  
 A multiprocessor system not only 
provides concurrency, it can also provide 
true parallelism. Parallelism occurs 
when multiple processes are executing 
simultaneously on different processors. 
A parallel program can actually perform 
multiple tasks at one, while a concurrent 
program can only provide the illusion of 
multiple task execution.  
 In order to achieve true 
parallelism on a multiprocessor system 
with the process model, a program must 
be designed as a group of distinct 
processes that cooperate and share 
resources through some form of 
interprocess communication, such as 
shared memory. Most modern operating 
systems provide mechanisms to map, or 
overlay, a portion of a given process’s 
memory space with the memory space 

from another process. Both processes 
view the shared memory space as part of 
their own addressable memory space. As 
a result, any changes to the contents of 
the shared memory space by one process 
are visible to the other process. 
 
Real-time vs. Time-sharing Processes 

 
 In a general purpose (a.k.a. non-
real-time) operating system, the time-
sharing process scheduler tries to ensure 
that all runnable processes will 
eventually get a chance to run. An I/O 
bound process will occasionally block 
and allow some other process to assume 
control of the CPU. A compute-bound 
process, on the other hand, will run until 
it is preempted by the scheduler. This is 
usually accomplished by periodically 
interrupting the running process on each 
CPU. Each process is usually given a 
guaranteed amount to time that it can run 
on a CPR without being preempted. This 
period of time is called a time slice. At 
the end of each time slice, the scheduler 
will choose another process to run on the 
give CPU. The choice concerning which 
process to run next is made based upon a 
priority value that is associated with 
each process. As a process runs, its 
priority diminishes or degrades. When 
the priority of a process degrades to 
some minimum value the priority will be 
resorted to a maximum value. 
 In order to meet the strict timing 
requirements for real-time simulation, 
the traditional time-sharing scheduler 
must be bypassed. The operating system 
kernel must provide a mechanism to 
allow normal processes to be scheduled 
in real-time mode. A real-time 
simulation will require one or more 
actual processors to run in real-time 
mode. 



 

 

 Running a processor in real-time 
mode consists of: 

• Remove the processor from 
workload consideration by the 
normal, time-sharing process 
scheduler 

 
• The ability to assign specific 

processes to specific real-time 
processors 

 
• Prevent the processor from 

servicing any interrupts that can 
be handled by other non-real-
time processors 

 
• Prevent the preemptive 

scheduling on the processor; i.e. 
a process running on a real-time 
processor gives up control of the 
processor only when it chooses 
to relinquish control 

 
Thread Model 

 
 The term thread refers to a single 
point of control that executes a 
sequence of instructions. The process 
model can be thought of as a 
specialization of the thread model 
where there is only a single thread. 
The thread model expands on the 
process model by providing the same 
abstraction as the process model but 
allowing multiple execution 
sequences. All of the process 
resources are shared by all of the 
threads. 
 The implicit sharing of process 
resources in a multithreaded program 
has benefits and drawbacks. The 
immediate benefit is the elimination 
of the need to use an explicit shared 
memory mechanism to communicate 
between threads. Another benefit is 
that a multithreaded program is a 

single program, where as a 
multiprocess program is several 
separate programs that must work 
together. A single program is simpler 
to design and maintain. Threads 
consume less system resources than 
processes, making threads faster and 
easier to create that processes.  
 Unlike the process model, 
however, the thread model does not 
provide any explicit memory 
protection between threads. The 
developer must be conscious of the 
interaction of different threads on the 
common address space. If more than 
one thread can read and/or write a 
given data object, then some form of 
synchronization must be used to 
avoid data corruption. It is also 
possible for a given thread to corrupt 
the stack or heap memory used by 
another thread. 
 
User Threads vs. Kernel Threads 

 
 There are two types of thread 
models available: user threads and 
kernel threads. User threads allow 
the developer to use threads as an 
organizational tool within programs, 
but do not allow for true parallelism. 
These types of threads are only 
visible within the given process; i.e., 
they are not visible to the operating 
system. As a result, the operating 
system cannot schedule these threads 
to run in parallel on multiple 
processors. The application itself has 
to schedule and manage the threads. 
As long as a user threads application 
uses non-blocking system calls, such 
as application can maintain several 
independently executing tasks. A 
blocking system call will suspend the 
calling process until the system call 
completes. 



 

 

 Kernel threads, on the other 
hand, are recognized and managed 
by the operating system. They can be 
run in parallel on a multiprocessor 
machine. Kernel thread applications 
can also use blocking systems calls, 
since the operating system will 
replace any blocked threads with a 
runnable thread. A kernel thread is 
usually implemented as tow-part 
object. The user-mode portion is the 
application interface and data to the 
thread. The second part is the kernel-
mode portion that exists inside the 
operating system kernel. The kernel-
mode part is used by the operating 
system to schedule the thread as an 
independent entity. The kernel-mode 
portion also allows the operating 
system to bind the thread to one or 
more specified processors.  
 

Object-Oriented Approach to 
Threads 

 
 A number of different types of 
objects are necessary for developing 
multithreaded real-time simulations. 
These objects can grouped into two 
categories: objects that represent the 
threads themselves and objects used 
to synchronize the threads. These 
objects allow the developer to 
encapsulate all of the low-level 
details related to using threads. 
 The C++ language does not 
provide any direct support for 
multithreaded programming. The 
approach used by LaSRS++ [3] is to 
use C++ wrappers classes around 
existing C interface libraries. 
LaSRS++ uses classes that 
encapsulate threads, mutexes and 
barriers. These classes hide all the 
low-level details for the actual thread 
package in use. Currently, LaSRS++ 

only supplies wrappers for SGI Irix 
share group processes [8]. 
Preliminary wrappers are in 
development for the POSIX threads 
package [1]. 
 

Thread Objects 
 
 A single wrapper class is used to 
represent a thread. This class 
contains all the low-level data and 
function calls necessary to create, 
identify and destroy the thread. Since 
the mentioned thread libraries use a 
C language interface, the user must 
prove a C function that the thread 
will start execution after creation is 
complete. The developer must 
provide the wrapper object with 
function as a constructor argument. 
Another constructor argument 
provides the option of allowing the 
new thread to start executing 
immediately, or of manually starting 
the thread at a later time. 
 

Mutexes (or Locks) 
 
 The term mutex (short for mutual 
exclusion), refers to a 
synchronization primitive used to 
provide exclusive access to some 
shared resource. When a given 
thread wants exclusive access to a 
given shared resource, the thread 
tries to lock the mutex. If no other 
threads currently have exclusive 
access, the thread acquires the mutex 
and has exclusive access to the 
resource. If another thread already 
has exclusive access to the resource, 
the original thread will block 
(suspend) until the resource is 
released when the controlling thread 
unlocks the mutex. The mutex is said 



 

 

to be owned by the thread that has 
successfully locked the mutex.  
 

Barriers 
 
 A barrier is a synchronization 
primitive used to bring a number of 
threads together during program 
execution. A barrier is initialized 
with the number of threads that it is 
required to synchronize, call this 
number n. Then, the barrier will 
suspend all threads that enter it until 
n threads are suspended in the 
barrier. Once the barrier contains N 
threads, all the suspended threads are 
allowed to continue.  
 

Threads in a Real-Time 
Simulation 

 
 Kernel threads are required in 
order to build a multithreaded, real-
time simulation. In addition the 
operating system must provide the 
ability to bind specific threads to 
specific processors. A real-time 
thread is defined to be a kernel 
thread that has been bound to a 
processor running in real-time mode. 
Each processor to be used for real-
time computations is assigned a 
single real-time thread. Each real-
time thread assumes complete 
control of its assigned processor, 
until the thread decides to relinquish 
control. 
 A multithreaded, real-time 
program is organized as a main real-
time thread controlling zero or more 
auxiliary real-time threads. This is 
often referred to as the “Work-Crew 
Model” [1]. The main thread 
monitors the real-time clock and 
informs the auxiliary threads when 
the clock ticks: i.e. frame start. The 

auxiliary threads wait for frame start 
notification from the main thread, 
perform all computations for the 
given frame, and notify the main 
thread when computations are 
complete. Note that both the main 
and all auxiliary threads do not make 
any blocking system calls. An 
undeterministic duration system 
could cause a hard real-time 
simulation to miss a frame deadline. 
 
 Figure 2 illustrates the use of 
kernel threads in a real-time 
simulation. This approach is know as 
the one-to-one method [1]; i.e., one 
kernel thread to one processor. This 
approach is common for compute-
bound threads, where blocking is not 
an issue. 
 
 Figure 3 shows the LaSRS++ 
classes that correspond to the main 
and auxiliary threads. A 
MainSimulationThread object 
contains a variable sized vector of 
AuxiliarySimulationThread objects. 
Every frame, the 
MinSimulationThread object will 
coordinate with the attached set of 
AuxiliarySimulationThread objects. 
Figure 4 shows the runtime 
interaction between a 
MainSimulationThread object and an 
AuxiliarySimulationThread object. 
 

 
 



 

 

 
 The easiest way to partition 
computations between threads is to 
compute disjoint sections of math 
models on different threads. This 
eliminates the need for using time-
consuming thread synchronization 
primitive during the compute phase 

of the frame. If thread 
synchronization during the compute 
phase of the frame. If thread 
synchronization during the compute 
phase is unavoidable, at least try to 
minimize the usage.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 

Separate Thread for Graphical 
User Interface 

 A separate thread can be used to 
execute a GUI capable of monitoring 
and controlling a simulation. The 
GUI is usually considered non-real-
time, so the GUI thread is assigned 
to run on a non-real-time processor. 

Due to the fact that many GUI 
toolkits are not thread-safe, the GUI 
is designed such that only a single 
thread actually executes function 
calls to the GUI toolkit.  
  
 LaSRS++ provides an interface 
class that simplifies the creation of 



 

 

separate thread GUIs. Class 
SeperateThreadGui is an abstract 
class that encapsulates GUI thread 
creation and synchronization. This 
class specifies the behavior that all 
separate thread GUIs must exhibit. 
All GUI startup synchronization is 
also handled within the interface 
class constructor. Since this class 
specifies the execution sequence, 
developers can focus on GUI design 
and implementation issues, without 
being concerned with thread-specific 
issues. 
 A new GUI is created by 
deriving a new class from 
SeparateThreadGui and providing 
definitions for the following pure 
virtual functions: 

• installSignalHandlers() 
• createGuiObjuects() 
• executeEventLoop() 
• destroyGuiObjects() 

 
These member functions contain 
GUI toolkit function calls that 

create, execute and destroy the 
actual GUI. The actual 
implementation can be 
performed without any 
knowledge of threads. This 
design allows the GUI developer 
to focus on GUI design and 
implementation issues, not thread 
issues. 
 SeparateThreadGui class 
contains all the necessary thread 
and synchronization objects (see 
Figure 5). The constructor 
creates a separate thread that 
executes private member 
function guiThreadExecutive(); 
this is the predefined execution 
sequ4ence. In this design the 
main thread creates an instance 
of a concrete class derived from 
SeparateThreadGui (see Figure 
6). Startup synchronization with 
the new thread usually occurs in 
the constructor of the new 
derived object. 

 



 

 

 
 

 
 
 
 
 
 



 

 

 
 Developers and users 
want to monitor and modify 
simulation variables. Monitoring 
simulation variables does not 
require any thread 
synchronization to avoid data 
corruption. There are several 
techniques to minimize 
synchronization between a 
separate thread GUI thread to 
only change variables that are 
read-only to the simulation 
threads. Another method 
involves having the GUI modify 
values in a temporary buffer. The 
real-time threads can then use the 
updated buffer values to modify 
simulation variables when there 
is no risk of data corruption. 
 

Conclusions 
 
 The NASA Langley 
Standard Real-Time Simulation 
Framework in C++ (LaSRS++) 
provides support for multithread 
programming. The main 
motivation for using multiple 
threads is to make parallel, real-
time simulation programming 
easier for the developer. The 
presented object-oriented designs 
provide and environment where 
developers can focus on their 
specific programming task 
instead of getting bogged down 
in thread details. Multithread 
programs are developed as single 
entities instead of several 
cooperating programs. Two of 
the possible uses of multiple 
threads include: increasing the 
number of computations possible 
during a frame and executing 
graphical user interfaces for 

program control and data 
monitoring.  
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