

The Use of Multiple Threads in An
Object-Oriented Real-Time Simulation

David W. Geyer

Unisys Corporation

NASA Langley Research Center
MS 169

Hampton, Virginia 23681

Abstract
 As real-time simulations become
more complex, a single processor is no
longer sufficient to perform all of the
necessary computations. It becomes
desirable to execute independent
sections of a real-time simulation on
different processors. The traditional
approach to utilize multiple processors
on a symmetric multiprocessor machine
involves writing a program composed of
one process per processor that interact
through shared memory. A program that
uses treads can utilize multiple
processors without the overhead of full
processes or the use of a cumbersome
shared memory mechanism. This is due
to the fact that threads implicitly share a
common address space. A multithreaded
real-time program is organized as a main
thread controlling zero or more auxiliary
teal-time threads. Each processor to be
used for real-time computations is
assigned a single auxiliary real-time
thread. The main thread monitors the
real-time clock and informs the auxiliary
threads when the clock ticks. An
auxiliary thread can also be used to
monitor and control the simulation via a
graphical user interface (GUI). These
object-oriented designs were
implemented in C++ for the NASA
Langley Standard Real-Time Simulation
(LaSRS++) Application Framework.

Introduction

Real-time simulations are continuous
simulations that have a strict and direct
correspondence between simulation time
and real-world time: one unit of time in
the simulation is equal to one unity of
time in the real world. This type of
simulation is usually used to represent or
study a real dynamic phenomenon as it
occurs. Real-time control of dynamic
processes requires a human-in-the-loop
or simulated controller (e.g. a pilot
flying a flight simulator). Real-time
simulations often involve modeling the
evolution of continuous processes over
time. This is accomplished by dividing
time into small fixed intervals and
solving differential equations at each
successive interval of time. This type of
computation is very time critical. It must
be possible to perform all of the
necessary computations in the allotted
amount of time.

As real-time simulations become
more complex, a single processor is no
longer sufficient to perform all of the
necessary computations. It becomes
desirable to execute independent
sections of the simulation model on
different processors. The traditional
approach to utilizing multiple processors
on a symmetric multiprocessor machine
involves writing a program composed of
one process per processor that interact

through shared memory. This involves
using an explicit shared memory
mechanism that must be managed by the
program. This approach also presents a
problem when using C++ [7] virtual
functions: virtual functions for a given
object are only available in the process
that created the object (i.e., the virtual
function table is bound to the address
space of the creator process).

 A program that uses threads can
utilize multiple processors without the
overhead of full processes or the use of a
cumbersome shared memory
mechanism. This is due to the fact that
threads implicitly share a common
address space. Because the virtual
function tables are bound to the shared
address space, C++ virtual functions for a
given object are available in any thread.

Real-Time Simulation

 In order to perform real-time
simulations, it is necessary to
synchronize the simulation execution
with real world time. This is normally
accomplished by system level software
that interacts with an external clock. The
external clock must be accurate and have
a precision on the order of microseconds
or even nanoseconds. The system level
software divides computer operation into
fixed, equal intervals of time called
frames. The simulation code waits for a
frame to start, performs its
computations, and informs the system
level code when it is done. The
simulation time is incremented by one
frame time and the cycle repeats. As
long as the simulation code takes less
time to execute than a single frame, the
simulation will continue to operate in
real-time.

Figure 1: real-time frame

 Figure 1 illustrates the concept of
a frame. They synchronous input period
of the frame is a variable length of time
where information from the outside
world is deposited into the memory
space of the application code. Similarly,
during the synchronous output period,
application information is transferred to
the outside world. These periods are
considered synchronous since their
execution is dependent on the system
clock for start (input) and stop (output)
times. The actual code that simulates the
dynamic system runs during the
application compute time.
 If, for some reason, the dynamic
system code takes longer to execute than
the allotted application compute time,
the simulation will have a deterministic
behavior based on the nature of the real-
time constrain. A hard real-time system
sill halt with a critical error if the real-
time constraint is violated. A soft real-
time system will allow computations
longer that a frame and take some
appropriate action without halting. Flight
simulations that involve a human-in-the-
loop control mechanism are hard real-
time systems.

Process Model

 The process model is an
abstraction used by traditional operating
systems to handle program execution.
Each process is composed of an
addressable memory space, a single
sequence of machine instructions to

execute, and other resources maintained
by the operating system. Each process
has its own, private address space,
isolated from all other processes in the
system. The process model was
specifically designed in this way to
allow programmers to write applications
in isolation, unconcerned with the
memory usage of other execution
programs.
 In a multiprogramming
environment, several processes can be
running on the system at the same time.
Butenhof [1] defines concurrency as
“things that appear to happen at the same
time, but which may occur serially.” On
a uniprocessor system, processes only
appear to execute concurrently. In
reality, the operating system is providing
each executing process a small amount
of execution time on the CPU. Once this
time expires, the operating system
switches to another process to give it
some time. This switching occurs among
all running processes to allow them all to
progress in execution.
 A multiprocessor system not only
provides concurrency, it can also provide
true parallelism. Parallelism occurs
when multiple processes are executing
simultaneously on different processors.
A parallel program can actually perform
multiple tasks at one, while a concurrent
program can only provide the illusion of
multiple task execution.
 In order to achieve true
parallelism on a multiprocessor system
with the process model, a program must
be designed as a group of distinct
processes that cooperate and share
resources through some form of
interprocess communication, such as
shared memory. Most modern operating
systems provide mechanisms to map, or
overlay, a portion of a given process’s
memory space with the memory space

from another process. Both processes
view the shared memory space as part of
their own addressable memory space. As
a result, any changes to the contents of
the shared memory space by one process
are visible to the other process.

Real-time vs. Time-sharing Processes

 In a general purpose (a.k.a. non-
real-time) operating system, the time-
sharing process scheduler tries to ensure
that all runnable processes will
eventually get a chance to run. An I/O
bound process will occasionally block
and allow some other process to assume
control of the CPU. A compute-bound
process, on the other hand, will run until
it is preempted by the scheduler. This is
usually accomplished by periodically
interrupting the running process on each
CPU. Each process is usually given a
guaranteed amount to time that it can run
on a CPR without being preempted. This
period of time is called a time slice. At
the end of each time slice, the scheduler
will choose another process to run on the
give CPU. The choice concerning which
process to run next is made based upon a
priority value that is associated with
each process. As a process runs, its
priority diminishes or degrades. When
the priority of a process degrades to
some minimum value the priority will be
resorted to a maximum value.
 In order to meet the strict timing
requirements for real-time simulation,
the traditional time-sharing scheduler
must be bypassed. The operating system
kernel must provide a mechanism to
allow normal processes to be scheduled
in real-time mode. A real-time
simulation will require one or more
actual processors to run in real-time
mode.

 Running a processor in real-time
mode consists of:

• Remove the processor from
workload consideration by the
normal, time-sharing process
scheduler

• The ability to assign specific

processes to specific real-time
processors

• Prevent the processor from

servicing any interrupts that can
be handled by other non-real-
time processors

• Prevent the preemptive

scheduling on the processor; i.e.
a process running on a real-time
processor gives up control of the
processor only when it chooses
to relinquish control

Thread Model

 The term thread refers to a single
point of control that executes a
sequence of instructions. The process
model can be thought of as a
specialization of the thread model
where there is only a single thread.
The thread model expands on the
process model by providing the same
abstraction as the process model but
allowing multiple execution
sequences. All of the process
resources are shared by all of the
threads.
 The implicit sharing of process
resources in a multithreaded program
has benefits and drawbacks. The
immediate benefit is the elimination
of the need to use an explicit shared
memory mechanism to communicate
between threads. Another benefit is
that a multithreaded program is a

single program, where as a
multiprocess program is several
separate programs that must work
together. A single program is simpler
to design and maintain. Threads
consume less system resources than
processes, making threads faster and
easier to create that processes.
 Unlike the process model,
however, the thread model does not
provide any explicit memory
protection between threads. The
developer must be conscious of the
interaction of different threads on the
common address space. If more than
one thread can read and/or write a
given data object, then some form of
synchronization must be used to
avoid data corruption. It is also
possible for a given thread to corrupt
the stack or heap memory used by
another thread.

User Threads vs. Kernel Threads

 There are two types of thread
models available: user threads and
kernel threads. User threads allow
the developer to use threads as an
organizational tool within programs,
but do not allow for true parallelism.
These types of threads are only
visible within the given process; i.e.,
they are not visible to the operating
system. As a result, the operating
system cannot schedule these threads
to run in parallel on multiple
processors. The application itself has
to schedule and manage the threads.
As long as a user threads application
uses non-blocking system calls, such
as application can maintain several
independently executing tasks. A
blocking system call will suspend the
calling process until the system call
completes.

 Kernel threads, on the other
hand, are recognized and managed
by the operating system. They can be
run in parallel on a multiprocessor
machine. Kernel thread applications
can also use blocking systems calls,
since the operating system will
replace any blocked threads with a
runnable thread. A kernel thread is
usually implemented as tow-part
object. The user-mode portion is the
application interface and data to the
thread. The second part is the kernel-
mode portion that exists inside the
operating system kernel. The kernel-
mode part is used by the operating
system to schedule the thread as an
independent entity. The kernel-mode
portion also allows the operating
system to bind the thread to one or
more specified processors.

Object-Oriented Approach to
Threads

 A number of different types of
objects are necessary for developing
multithreaded real-time simulations.
These objects can grouped into two
categories: objects that represent the
threads themselves and objects used
to synchronize the threads. These
objects allow the developer to
encapsulate all of the low-level
details related to using threads.
 The C++ language does not
provide any direct support for
multithreaded programming. The
approach used by LaSRS++ [3] is to
use C++ wrappers classes around
existing C interface libraries.
LaSRS++ uses classes that
encapsulate threads, mutexes and
barriers. These classes hide all the
low-level details for the actual thread
package in use. Currently, LaSRS++

only supplies wrappers for SGI Irix
share group processes [8].
Preliminary wrappers are in
development for the POSIX threads
package [1].

Thread Objects

 A single wrapper class is used to
represent a thread. This class
contains all the low-level data and
function calls necessary to create,
identify and destroy the thread. Since
the mentioned thread libraries use a
C language interface, the user must
prove a C function that the thread
will start execution after creation is
complete. The developer must
provide the wrapper object with
function as a constructor argument.
Another constructor argument
provides the option of allowing the
new thread to start executing
immediately, or of manually starting
the thread at a later time.

Mutexes (or Locks)

 The term mutex (short for mutual
exclusion), refers to a
synchronization primitive used to
provide exclusive access to some
shared resource. When a given
thread wants exclusive access to a
given shared resource, the thread
tries to lock the mutex. If no other
threads currently have exclusive
access, the thread acquires the mutex
and has exclusive access to the
resource. If another thread already
has exclusive access to the resource,
the original thread will block
(suspend) until the resource is
released when the controlling thread
unlocks the mutex. The mutex is said

to be owned by the thread that has
successfully locked the mutex.

Barriers

 A barrier is a synchronization
primitive used to bring a number of
threads together during program
execution. A barrier is initialized
with the number of threads that it is
required to synchronize, call this
number n. Then, the barrier will
suspend all threads that enter it until
n threads are suspended in the
barrier. Once the barrier contains N
threads, all the suspended threads are
allowed to continue.

Threads in a Real-Time
Simulation

 Kernel threads are required in
order to build a multithreaded, real-
time simulation. In addition the
operating system must provide the
ability to bind specific threads to
specific processors. A real-time
thread is defined to be a kernel
thread that has been bound to a
processor running in real-time mode.
Each processor to be used for real-
time computations is assigned a
single real-time thread. Each real-
time thread assumes complete
control of its assigned processor,
until the thread decides to relinquish
control.
 A multithreaded, real-time
program is organized as a main real-
time thread controlling zero or more
auxiliary real-time threads. This is
often referred to as the “Work-Crew
Model” [1]. The main thread
monitors the real-time clock and
informs the auxiliary threads when
the clock ticks: i.e. frame start. The

auxiliary threads wait for frame start
notification from the main thread,
perform all computations for the
given frame, and notify the main
thread when computations are
complete. Note that both the main
and all auxiliary threads do not make
any blocking system calls. An
undeterministic duration system
could cause a hard real-time
simulation to miss a frame deadline.

 Figure 2 illustrates the use of
kernel threads in a real-time
simulation. This approach is know as
the one-to-one method [1]; i.e., one
kernel thread to one processor. This
approach is common for compute-
bound threads, where blocking is not
an issue.

 Figure 3 shows the LaSRS++
classes that correspond to the main
and auxiliary threads. A
MainSimulationThread object
contains a variable sized vector of
AuxiliarySimulationThread objects.
Every frame, the
MinSimulationThread object will
coordinate with the attached set of
AuxiliarySimulationThread objects.
Figure 4 shows the runtime
interaction between a
MainSimulationThread object and an
AuxiliarySimulationThread object.

 The easiest way to partition
computations between threads is to
compute disjoint sections of math
models on different threads. This
eliminates the need for using time-
consuming thread synchronization
primitive during the compute phase

of the frame. If thread
synchronization during the compute
phase of the frame. If thread
synchronization during the compute
phase is unavoidable, at least try to
minimize the usage.

Separate Thread for Graphical
User Interface

 A separate thread can be used to
execute a GUI capable of monitoring
and controlling a simulation. The
GUI is usually considered non-real-
time, so the GUI thread is assigned
to run on a non-real-time processor.

Due to the fact that many GUI
toolkits are not thread-safe, the GUI
is designed such that only a single
thread actually executes function
calls to the GUI toolkit.

 LaSRS++ provides an interface
class that simplifies the creation of

separate thread GUIs. Class
SeperateThreadGui is an abstract
class that encapsulates GUI thread
creation and synchronization. This
class specifies the behavior that all
separate thread GUIs must exhibit.
All GUI startup synchronization is
also handled within the interface
class constructor. Since this class
specifies the execution sequence,
developers can focus on GUI design
and implementation issues, without
being concerned with thread-specific
issues.
 A new GUI is created by
deriving a new class from
SeparateThreadGui and providing
definitions for the following pure
virtual functions:

• installSignalHandlers()
• createGuiObjuects()
• executeEventLoop()
• destroyGuiObjects()

These member functions contain
GUI toolkit function calls that

create, execute and destroy the
actual GUI. The actual
implementation can be
performed without any
knowledge of threads. This
design allows the GUI developer
to focus on GUI design and
implementation issues, not thread
issues.
 SeparateThreadGui class
contains all the necessary thread
and synchronization objects (see
Figure 5). The constructor
creates a separate thread that
executes private member
function guiThreadExecutive();
this is the predefined execution
sequ4ence. In this design the
main thread creates an instance
of a concrete class derived from
SeparateThreadGui (see Figure
6). Startup synchronization with
the new thread usually occurs in
the constructor of the new
derived object.

 Developers and users
want to monitor and modify
simulation variables. Monitoring
simulation variables does not
require any thread
synchronization to avoid data
corruption. There are several
techniques to minimize
synchronization between a
separate thread GUI thread to
only change variables that are
read-only to the simulation
threads. Another method
involves having the GUI modify
values in a temporary buffer. The
real-time threads can then use the
updated buffer values to modify
simulation variables when there
is no risk of data corruption.

Conclusions

 The NASA Langley
Standard Real-Time Simulation
Framework in C++ (LaSRS++)
provides support for multithread
programming. The main
motivation for using multiple
threads is to make parallel, real-
time simulation programming
easier for the developer. The
presented object-oriented designs
provide and environment where
developers can focus on their
specific programming task
instead of getting bogged down
in thread details. Multithread
programs are developed as single
entities instead of several
cooperating programs. Two of
the possible uses of multiple
threads include: increasing the
number of computations possible
during a frame and executing
graphical user interfaces for

program control and data
monitoring.

Bibliography

(1) David R. Butenhof.
Programming with POSIX
Threads. Addison-Wesley
Publishing Company Readin,
Massachusetts, 1997

(2) Michael Madden, et al.

Constructing a multiple
vehicle, multiple-cpu using
object-oriented C++ Number
AIAA-98-4530 in AIAA
Modeling & Simulation
Technologies Conference,
August 1998

(3) Richard A. Leslie, et al.

LaSRS++ an object oriented
framework for real-time
simulation of aircraft.
Number AIAA-98-4529 in
AIAA Modeling &
Simulation Technologies
Conference, August 1998.

(4) Robert Martin. Designing

Object-Oriented C++
Applications Using the
Booch Method. Prentice-
Hall, Inc., 1995 ISBN 0-13-
203837-4.

(5) Scott Meyers, Effective C++.

Addison-Wesley Publishing
Company, 1992. ISBN 0-
201-92488-9.

(6) Pierre-Allain Muller. Instant

UML. Wrox Press LTD.,
1997/ ISBN 1-86100-87-1.

(7) Bjarne Stroustup. The C++
Programming Language.
Addison-Wesley Publishing
Company, third edition,
1997. ISBN 0-201-88954-4.

(8) Topics in irix programming.

Technical Report 007-2478-
006, Silicon Graphics
Incorporated, 1998.

(9) Uresh Vahalia. UNIX

Internals. Prentice Hall,
Upper Saddle River, New
Jersey, 1996.

	Abstract
	Introduction
	Real-Time Simulation
	Process Model
	Real-time vs. Time-sharing Processes
	Thread Model
	User Threads vs. Kernel Threads

