
AIAA-99-4336

USE OF THE

MEDIATOR DESIGN PATTERN
IN THE LaSRS++ FRAMEWORK

Kevin Cunningham�

Unisys Corporation

NASA Langley Research Center

MS 169

Hampton, VA 23681

Abstract

Software design patterns are effective, efficient, estab-

lished solutions to common software design problems.

The Mediator Design Pattern is a particularly simple

design pattern. It is used extensively in the NASA Lan-

gley Standard Real-Time Simulation in C++ (LaSRS++)

Framework. The Mediator Design Pattern acts as an

information ”broker” between the components of a sys-

tem. The use of the Mediator Design Pattern is a simple

means by which re-usability, simplicity and testability of

flight simulation software can be obtained.

Introduction

The goals of maintainability, extensibility and relia-

bility are certainly common to all software development

efforts. The ability to achieve these goals grows more

critical as the scope and intended lifespan of software

increase. The use of design patterns and object-oriented

analysis, design and programming techniques to meet

these goals is well established.1–4

The NASA Langley Standard Real-Time Simulation

in C++ (LaSRS++) Framework5 is a large scale collection

of classes which are used to build various simulations.

The framework software is intended to have a long lifes-

pan, outliving any one research simulation project which

it is used to develop. With this in mind, care was taken

to design the software using patterns and object-oriented

techniques.

There is much commonality in the way certain soft-

ware components interact. The relationships between

components result in patterns which are repeated over

and over regardless of the system being modeled. Es-

tablishing efficient and effective mechanisms for these

relationships is a problem which requires careful atten-

tion. Design patterns are evolved, yet simple solutions

to these common problems in software development.2

By using “tried and true” design patterns, a software de-

veloper is spared the time and expense of iterating to an

efficient solution to the problem.

The Mediator Design Pattern is a common software

design pattern that is used extensively in the LaSRS++

Framework. The Mediator is responsible for passing

data between, and managing the behavior of, its aggre-

gate components. It is a simple, yet evolved solution

to several common software design problems. The use

of the Mediator Design Pattern simplifies component

interfaces and eliminates component interdependencies,

leading to a more simple design. This results in enhanced

re-usability and increased testability. The final product

is software with superior reliability, maintainability and

extensibility.

�Senior Member, AIAA
Copyright c
1999 by the author. Published by the American In-

stitute of Aeronautics and Astronautics, Inc. with permission.

1
American Institute of Aeronautics and Astronautics

VehicleSystem
vehicle : Vehicle*

getVehicle()
update()

Mode

SimulationModel
mode : Mode&
timer : Timer&

getMode()
getTimer()
initialize()

Timer

Mode is an enumeration
that contains the current
simulation mode.
LaSRS++ modes include RESET,
TRIM, HOLD and OPERATE.

Timer is a class that manages
the time step, elapsed time in
OPERATE and elapsed frames
in OPERATE.

Figure 1: The Vehicle System

Fundamentals

Figure 1 is a class diagram6 of the Vehicle System

hierarchy. In the C++ language, a class is a software

developer’s fundamental building block. A single class

represents a single concept or physical entity. It contains

functions, which define behavior, as well as data. A par-

ticular instance of a class is called an object. Objects of

various class types can be used to create complex soft-

ware in a straight forward manner.

Two important relationships, inheritance and con-

tainment,7, 8 are illustrated in figure 1. Inheritance is

also called an “is a” relationship (an F/A-18 is an air-

plane). It is the means by which the detail can be built

up in a layered fashion. Containment is called a “has

a” relationship (an F/A-18 has a flight control system).

Containment occurs when one object instantiates (or

contains a reference to) another object.

Figure 1 illustrates that the Simulation Model class

contains Mode and Timer objects by reference. The

variables which represent the references are mode and

timer. The class also contains functions which a client

can call to obtain access to the mode and timer objects.

Additionally, the class contains a function defining be-

havior at initialization. The Vehicle System class inherits

from the Simulation Model class. The vehicle pointer in

Vehicle System is a pointer to the parent vehicle which

contains the Vehicle System object.

A software framework is a collection of components

which are used to build a variety products. In the case of

the LaSRS++ framework, the products are simulations.

One of the goals for the LaSRS++ framework is to foster

good design at the aircraft model level via design choices

implemented at the framework level. The Vehicle Sys-

tem concept is one example of this.

The design of the LaSRS++ framework is such that

classes which are Vehicle Systems act as mediators.

These mediator classes are intended to manage com-

munication between the vehicle itself and its systems’

components. The mediator is responsible for passing

2
American Institute of Aeronautics and Astronautics

data into its aggregates, instructing the aggregates to per-

form their calculations, and extracting any output. The

Vehicle System is the framework’s design pattern for de-

coupling a model from the vehicle.

Framework Systems

The Vehicle System class shown in figure 1 is an ab-

stract class. Abstract classes are not designed to support

the creation of objects, therefore there can be no in-

stances of an abstract class. They can only be inherited.

Abstract classes serve as a portal to system extension,

providing the form which other classes are to follow.

When inheritance relationships are chained together ad-

ditional detail is added with each layer. The layer below

the Vehicle System class provides common interfaces

which in turn will be inherited.

The LaSRS++ framework provides support for a

number of systems:

� Aerodynamic System

� Caution And Warning System

� Control System

� Fuel System

� Hydraulic System

� Landing Gear System

� Navigation System

� Propulsion System

� Weapon System

The class diagram for the some systems in the frame-

work is shown in figure 2.

AeroSystem ControlSystem FuelSystem

PropulsionSystemNavigationSystem

WeaponSystem

Aircraft

T

list

Mediator

VehicleSystem
vehicle : Vehicle*

getVehicle()
update()

Vehicle
system_list : list<VehicleSystem*>

updateVehicleSystems()

list<VehicleSystem*>

0..*0..*

Figure 2: Systems in the Framework

3
American Institute of Aeronautics and Astronautics

Figure 2 shows the relationship between the Vehicle

class and the Vehicle Systems class. A Vehicle has a

linked list9 of Vehicle Systems. There are no restrictions

on the number of systems that can go on the list. As a

specific aircraft instantiates its systems, the objects need

only be added to the list. This registration is a simple

matter of a single call to a function which is inherited

from the Vehicle object. This makes it possible to up-

date all the systems in a vehicle by simply sending one

instruction to update whatever is on the list.

The system specific classes shown in figure 2 , which

inherit from Vehicle System, establish the common inter-

face that various simulations will use. When a specific

vehicle simulation is being developed, the details spe-

cific to that simulation model are added to the interface.

All systems of that type share the same interface, only

the encapsulated details will vary.

A Closer Look At A System

Figure 3 is a more detailed class diagram. It shows

how a mediator class fits into an architecture to decou-

ple one part of a design from another. This means that

a class representing a system being modeled does not

require direct knowledge of the aircraft of which it is a

part. The model is not dependent on the vehicle to per-

form its function.

Figure 4 is an object interaction diagram. The inter-

actions depicted in that diagram are for a greatly sim-

plified aerodynamic model. Enough detail is provided

to illustrate how a typical mediator is used to decouple

classes.

VehicleSystem
vehicle : Vehicle*

getVehicle()
update()

Aircraft

Vehicle
system_list : list<VehicleSystem*>

updateVehicleSystems()

AeroSystem
Aero

update()

F18

updateVehicleSystems()

F18AeroSystem

update()

F18Aero

update()

SimulationModel
mode : Mode&
timer : Timer&

getMode()
getTimer()
initialize()

Vehicle

Mediator:

Decouples the Model from the Vehicle
Model

Figure 3: An Aerodynamic System Mediator

4
American Institute of Aeronautics and Astronautics

 : F18 : F18AeroSystem : F18Aero

update()

getAngleOfAttack()

getSideSlipAngle()

putAngleOfAttack()

putSideSlipAngle()

update()

getForceCoefficients()

getMomentCoefficients()

getForces()

getMoments()

ModelMediatorVehicle

calculateForcesAndMoments()

Figure 4: Aerodynamic System Object Interaction Diagram

Figure 4 shows that the interactions begin with the

vehicle calling the update function in the mediator. The

instruction (or message) for the Aerodynamic System

to update itself triggers a series events. The mediator

calls functions in the vehicle to obtain independent data

required for table lookups in the aerodynamic model.

After the necessary data has been obtained by the medi-

ator, it is passed into the model. This occurs by calling

publicly accessible inlined mutator functions which are

defined in the model class. Mutator functions are the

mechanism by which an object’s internal, private data

may be set. Next, the mediator instructs the aerody-

5
American Institute of Aeronautics and Astronautics

namic model to update itself. After the coefficients are

calculated and totaled, the results are retrieved when the

mediator calls the inlined accessor functions. Finally,

the mediator calls a function defined within the mediator

class which converts the coefficients into dimensional

forces and moments.

The use of the mediator pattern allows the model

class to remain blissfully ignorant of the vehicle’s de-

tails. The mediator now contains the details required

to manage the communication between the two objects.

Complexity is shifted out of the model and into the me-

diator. In addition to decoupling components, the overall

system is simplified by this design choice.

Major Benefits

Two major benefits of the decoupling provided by the

use of the mediator pattern are increased testability and

increased re-usability. Testing is fundamental to ensur-

ing software validity and reliability. Prior to integration

testing, it is desirable to test all of a model’s compo-

nents in an isolated environment. The key element to

this type of unit testing is the ability to decouple the

model from the rest of the simulation. Effort can then be

put into developing highly effective test scenarios, rather

than conjuring-up unique ways to isolate the test process

from the simulation environment.

If “time is money”, then the ability to re-use software

is gold. A component with many dependencies cannot

be re-used. Inter-component dependencies tend to make

a large system stiff, in-flexible and difficult to extend.

When multi-component interaction and behavior are me-

diated, the design of a single component readily supports

re-use by different models, systems, simulations and fa-

cilities.

Lessons Learned

Figure 5 is the class diagram for the model of an

aircraft’s flight control law. It is a large and complex

model. The figure illustrates the interdependencies that

result when components of a flight control system share

data through direct interaction. Each class is dependent

on all the other classes from which it needs data. This

creates a tightly coupled system. Any new data or be-

havior added to one class affects all the other classes that

depend on it. As a tightly coupled system grows, it tends

to take on the characteristics of a monolithic class. This

limits re-usability, hampers testability and significantly

increases the time required to compile the software. In a

worst case scenario, every class would be dependent on

every other class. Don’t let this happen to you!

LongitudinalFCL

LateralFCL

DirectionalFCL

SpoilerFCL

SpeedBrakeFCL

FlapFCL

Figure 5: Class Dependencies Abound

The solution to this common design problem is the

Mediator Design Pattern. The use of the Mediator De-

sign Pattern rids objects of their explicit dependencies.

This greatly decouples and simplifies a system. Figure 6

illustrates the impact of a mediator on the system shown

in Figure 5.

LongitudinalFCL

LateralFCL

DirectionalFCL

SpoilerFCL

SpeedBrakeFCL

FlapFCL

FlightControlSystem

Figure 6: The Mediator Pattern To The Rescue

6
American Institute of Aeronautics and Astronautics

Figure 6 shows the more simple design. It is the su-

perior design. The aggregate classes no longer depend

on each other. In fact, they do not even depend on the

mediator class which encapsulates them. This autonomy

greatly increases re-usability. Testability is increased

in that each class may be tested as a single unit, rather

than testing the whole system at once. Finally, com-

pilation times are reduced by the fact that a software

change which only affects one class will only require re-

compilation of that class, not an entire coupled system.

Conclusions

The NASA Langley Standard Real-Time Simulation

in C++ (LaSRS++) Framework and aircraft simulations

developed within the framework have successfully used

the Mediator Design Pattern. The Mediator Design Pat-

tern is a simple, effective, efficient, established solution

to a number of common software design problems. The

use of the Mediator Design Pattern results in software

that is more easily tested at the component level, thus

promoting a higher quality, more reliable product. The

Mediator Pattern provides object decoupling, minimiz-

ing component interdependencies. This results in more

simple designs and software which is more maintain-

able and extensible. By minimizing system coupling,

the Mediator Design Pattern facilitates software re-use at

not only the model and simulation levels, but also at the

inter-facility level.

Bibliography

[1] Grady Booch. Object-Oriented Analysis and De-

sign. Benjamin/Cummings, Redwood City, Cali-

fornia, 1994.

[2] Gamma E., Helm R., Johnson R., Vlissides J.

Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading,

Massachusetts, 1995.

[3] John Lakos. Large-Scale C++ Software Design.

Addison-Wesley, Reading, Massachusetts, 1996.

[4] Robert C. Martin. Designing Object-Oriented C++

Applications Using The Booch Method. Prentice-

Hall, Englewood Cliffs, New Jersey, 1995.

[5] Richard A. Leslie, et al. LaSRS++ An Object-

Oriented Framework for Real-Time Simulation of

Aircraft. Paper Number AIAA-98-4529, August,

1998.

[6] Terry Quatrani. Visual Modeling With Rational

Rose and UML. Addison Wesley, Reading, Mas-

sachusetts, 1998.

[7] Bruce Eckel. Thinking in C++. Prentice-Hall, En-

glewood Cliffs, New Jersey, 1995.

[8] Bjarne Stroustrup. The C++ Programming Lan-

guage. Addison-Wesley Publishing Company,

Reading, Massachusetts, third edition, 1997.

[9] Atul Saini David R. Musser. STL Tutorial and

Reference Guid. Addison-Wesley, Reading, Mas-

sachusetts, 1996.

[10] Scott Meyers. Effective C++. Addison-Wesley,

Reading, Massachusetts, second edition, 1998.

[11] Patricia Glaab, et al. A Method to Interface Auto-

Generated Code into an Object-Oriented Simula-

tion. Paper Number AIAA-98-4531, August, 1998.

[12] P. Sean Kenney, et al. Using Abstraction to Isolate

Hardware in an Object-Oriented Simulation. Paper

Number AIAA-98-4533, August, 1998.

[13] Scott Meyers. More Effective C++. Addison-

Wesley, Reading, Massachusetts, 1996.

7
American Institute of Aeronautics and Astronautics

