
1
American Institute of Aeronautics and Astronautics

AIAA-2001-4244

PLATFORM-INDEPENDENCE AND SCHEDULING
IN A MULTI-THREADED REAL-TIME SIMULATION

Paul C. Sugden*
Melissa A. Rau†

Unisys Corporation

NASA Langley Research Center
Mail Stop 169

Hampton, VA 23681

P. Sean Kenney‡

Systems Development Branch
NASA Langley Research Center

Mail Stop 125B
Hampton VA 23681

Abstract*†

Aviation research often relies on real-time, pilot-in-
the-loop flight simulation as a means to develop new
flight software, flight hardware, or pilot procedures.
Often these simulations become so complex that a
single processor is incapable of performing the
necessary computations within a fixed time-step.
Threads are an elegant means to distribute the
computational workload when running on a symmetric
multi-processor machine. However, programming
with threads often requires operating system specific

* Software Engineer, Member AIAA.
† Software Engineer.
‡ Aerospace Engineer, Member AIAA.
Copyright  2001 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S.
Code. The U.S. Government has a royalty-free license
to exercise all rights under the copyright claimed
herein for Governmental purposes. All other rights are
reserved by the copyright owner.

calls that reduce code portability and maintainability.
While a multi-threaded simulation allows a significant
increase in the simulation complexity, it also increases
the workload of a simulation operator by requiring that
the operator determine which models run on which
thread. To address these concerns an object-oriented
design was implemented in the NASA Langley
Standard Real-Time Simulation in C++ (LaSRS++)
application framework. The design provides a
portable and maintainable means to use threads and
also provides a mechanism to automatically load
balance the simulation models.

Introduction

Aviation research often relies on real-time, pilot-in-
the-loop flight simulation as a means to develop new
flight software, flight hardware, or pilot procedures.
Concepts involving pilot interaction may require
concurrent simulation of multiple, independent or
loosely coupled simulation models. A single processor
may not be sufficient to perform all of the necessary
computations of these complex flight simulations. A
means to alleviate this problem is to distribute the
execution of independent simulation models among
multiple processors. Symmetric multi-processor

2
American Institute of Aeronautics and Astronautics

machines allow the independent simulation models to
be distributed among event loops executing in parallel.
Each processor must be able to complete the
computations of the models assigned to it before the
end of the frame. Therefore, the number of simulation
models that can be executed in a real-time multi-
processor simulation is limited by the number of
processors available for real-time use and by the
computational requirements of the simulation models.

Traditionally, multi-processor computers are used by
starting separate processes on each processor. The
processes interact with each other via shared memory,
message-passing, or some other form of inter-process
communication (IPC). While multi-process
implementations are functional, they are notoriously
complex, difficult to maintain, and limit the use of
polymorphism in certain modern object-oriented
programming languages6. Multi-threaded solutions, on
the other hand, allow multiple threads of execution to
operate within the same address space, eliminating the
need for IPCs, and eliminating restrictions on the use
of polymorphism. Threads are supported by most
modern operating systems and thereby enable the
development of an elegant, platform-independent
solution to the problem of how to simulate multiple
vehicles concurrently.

In previous work1 a generic design was presented for
the use of threads in the Langley Standard Real-Time
Simulation in C++ (LaSRS++) framework on a multi-
processor machine. While functional, the design had
several shortcomings. First, the design was
implemented with only the IRIX operating system
from Silicon Graphics Incorporated in mind. This
restricted the framework to only being able to perform
multi-threaded operations on the IRIX platform.
Second, the design unnecessarily tied the thread
classes to the IRIX barrier and lock implementations.
This coupling increases the difficulty of implementing
these features on different platforms and maintaining
the framework during operating system upgrades.
Clearly a more portable and maintainable design is
needed. The design also failed to provide a
mechanism to determine a feasible simulation model
distribution for the number of threads available during
a real-time simulation. If the distribution selection is

left to the simulation developer or user, experience
shows that even in a small-scale simulation, this
process can be costly, involving educated trial and
error guesses when a feasible distribution may not
even exist. A more effective solution is to provide
automatic scheduling of each model for execution by a
particular thread.

To address these issues, the existing design evolved
into a new form that is both portable and maintainable
and provides the mechanisms for an automatic
scheduling algorithm to distribute a set of simulation
models across a number of threads, such that the load
is as uniform as possible. The new design blends the
pre-existing thread design with the portability
abstraction used in the LaSRS++ application
framework for other operating system services2.

While the application of these techniques in the
LaSRS++ framework is used for the special purpose of
flight simulation, the thread design and the automatic
scheduling algorithm are independent of the purpose of
the application. The design is a simple, user-friendly
solution for the execution of any sequential, real-time
application, running on a symmetric multi-processor
architecture, whose iterations can be resolved into two
or more independent sequences of computation.

Design Requirements

A preexisting design for multi-threaded, real-time
simulation1 was extended to be platform independent
and incorporate automatic scheduling of models to
processors. The design had the following
requirements for threads:

1. The design must support a variable number of
threads selected at run-time.

2. The design must be portable.
3. The design must provide a mechanism for thread

synchronization that does not jeopardize real-time
deadlines.

The scheduling algorithm had the following
requirements:

1. The algorithm must allow a variable number of
simulation models to be processed on each thread.

3
American Institute of Aeronautics and Astronautics

2. The algorithm must automatically distribute
independent components of the workload amongst
available threads in such a way that real-time
deadlines are not jeopardized.

3. The algorithm must recognize if a feasible
workload distribution does not exist.

A design that met the above requirements was
implemented in the LaSRS++ application framework.
Object-oriented programming techniques were used
extensively to hide implementation details and
maximize code reuse. Well-known design patterns
were used where appropriate to promote simplicity and
readability of code, and encapsulate specific platform
dependencies. The Bridge, Singleton, Factory and
Mediator patterns were used extensively3. Using the
Bridge pattern, the implementation of an abstraction
can be changed without affecting clients. The
Singleton pattern ensures that there is a single, globally
accessible instance of a class. The Factory pattern is a
specialization of the Singleton pattern that is used to
encapsulate all platform-dependent, conditional
compilation. The Mediator pattern is an encapsulation
of object interaction that promotes loose coupling by
preventing objects from interacting directly.

Operating System Requirements for Real-Time

In order to build a multi-threaded, real-time simulation
for a particular symmetric multi-processor platform
running a general-purpose operating system, the
operating system must provide certain capabilities.
Traditional general-purpose time-sharing operating
systems schedule processes using a preemptive
scheduling policy. This means that a process is forced
to relinquish control of the processor once its time
slice has expired so that other processes can get
processor time. Since hard real-time deadlines could
be jeopardized by preemption, an operating system
that can support real-time simulations must provide a
mechanism for disabling the preemptive scheduler on
processors reserved for real-time use.

Traditional time-sharing operating systems also place
the address space of processes in virtual memory.
Virtual memory allows the operating system to handle
loads that are more demanding in terms of space than
the machine’s random access memory (RAM) will

allow. This is accomplished by swapping pages of
RAM in and out of secondary storage. Since
secondary storage access is significantly more costly in
terms of time than access to RAM, a suitable operating
system must provide the capability of locking the text
and data segments of a process into RAM.

Conventional operating systems for symmetric multi-
processors perform a task called load balancing. Load
balancing refers to the migration of processes amongst
the processors in such a way that the total system load
is distributed evenly across all available processors.
Since a real-time thread must never share processor
resources with other standard processes, the operating
system must provide a mechanism for forcing a thread
to run on a particular processor.

By default, the operating system is usually unaware of
multiple threads of execution within an address space,
leaving the scheduling of these threads as a task for the
process. This type of thread is commonly referred to
as a process-scope thread. However, for multi-
threaded real-time simulation applications, multiple
threads must be executing in parallel, which by
definition is impossible for process-scope threads. The
operating system must provide a mechanism for
creating threads that are schedulable by the kernel
rather than from within the process. This type of
thread is commonly called a system-scope or kernel
thread.

If a general-purpose operating system has all of these
capabilities, it is suitable for multi-threaded, real-time
simulation. Each thread of such a simulation must be a
system-scope thread within a process that has been
locked into RAM, set to run on a dedicated processor,
with preemptive scheduling disabled.

Object-Oriented Approach to Threads

The C++ language does not provide any direct (object-
oriented) support for multi-threaded programming.
Two types of classes are required for developing
object-oriented, multi-threaded applications. These
are classes that represent threads, and classes
representing thread synchronization mechanisms.
Thread synchronization mechanisms include mutexes
and barriers. The mutex is a mechanism that ensures

4
American Institute of Aeronautics and Astronautics

mutually exclusive access to data or to non-thread-safe
portions of code (critical sections) in a multi-threaded
process. The barrier provides a collection point for
some specified number of threads of execution, and
ensures that none continue until the specified number
of threads have arrived.

Classes were developed for the LaSRS++ application
framework that provide a platform-independent
interface to thread, mutex, and barrier facilities. For
each of these services, the bridge and factory design
patterns were used. The bridge pattern prevents clients
of thread-related services from being affected by
implementation details. This allows the
implementation portion of these classes to be changed
without requiring any modification to client
components. The factory design pattern encapsulates

all platform-specific and build-option-determined
conditional compilation. This significantly improves
the portability and maintainability of the LaSRS++
framework code.

Figure 1 shows a UML class diagram of the LaSRS++
thread implementation. When a client constructs a
new Thread, ThreadImplFactory constructs the
appropriate implementation (ThreadImpl). The
specific type of implementation is transparent to the
client. The LaSRS++ design for Barrier and Mutex is
analogous to the design for Thread.

To further increase the maintainability of the thread
implementation, the interfaces of the thread-related
abstraction classes were structured after the Portable
Operating System Interface (POSIX) standard,
commonly called pthreads. Pthreads are currently

ThreadImplFactory

instance()
destroyIns tance()
makeThreadImpl()

SprocThreadImpl

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

PosixThreadImpl

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

Thread
impl : ThreadImpl

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

ThreadImpl
cpu_id

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

Factory
pattern

Interface
portion of
bridge

Abstract
implementor
portion of
bridge

Concrete
implementor
portion of
bridge

IrixPosixThreadImpl

setRunOn()

Figure 1 Thread Design

5
American Institute of Aeronautics and Astronautics

supported under several variants of the UNIX
operating system including Solaris, Digital UNIX,
IRIX, and Linux4. As a result, the use of pthreads
allows us to build on any of these platforms using the
PosixThreadImpl as the concrete implementation
portion of the bridge. This source-code portability is
beneficial in an environment of potentially frequent
architecture changes8.

A requirement of the multi-threaded simulation
uncovers a deficiency in the POSIX standard. There is
nothing in the POSIX application programming
interface (API) for specifying a particular processor on
which a thread must run. This eliminates the
possibility of constructing a completely platform-
independent concrete thread implementation for multi-
threaded, real-time applications. A system-scope
pthread may be scheduled on a specific processor for
its lifetime, but the call to do this is platform-specific.
However, due to the use of the factory and bridge
design patterns, the work required to implement
platform-specific pthreads is minimal. The
PosixThreadImpl class has a virtual method
setRunOn() that takes the processor number as an
argument. To create a pthread that will run
successfully on the IRIX operating system, a class
named IrixPosixThreadImpl was created. This class
inherits from PosixThreadImpl and overrides the
setRunOn() method with the IRIX-specific system call
for running a thread on a given processor. In this way,
the reuse of the existing thread classes is maximized,
thus minimizing the work required for implementing
platform-specific thread models.

Real-Time Thread Synchronization

While each thread in a multi-threaded real-time
simulation is operating on independent tasks, there is
often some portion of the event loop that cannot be
executed before all threads have completed a certain
portion of their task. An example of this is
computation of relative geometry between simulation
models. Regardless of how relative geometry
computations are distributed, the state of all models
must have been updated before any of these
computations can take place. A barrier mechanism is
used to implement this sort of rendezvous.

Operating systems supporting multi-threaded programs
also support barrier mechanisms. Programs that are
not subject to strict real-time deadlines should
generally use the operating system supplied barrier
facility. However, if a thread blocks on a barrier
system call, it may not be guaranteed to resume
execution within an acceptable amount of time to meet
a real-time deadline. The alternative is to implement a
spin-loop barrier mechanism. In this barrier, a primary
thread waits at the barrier for all remaining threads to
arrive. As each thread arrives, it locks itself and waits
in a spin-loop conditioned on the value of that lock.
Once all threads have arrived, the primary thread
releases the lock for each remaining thread, and all
threads may continue.

Scheduling Algorithm

Efficient thread synchronization alone does not
guarantee that real-time deadlines will be met. The
computational load must be balanced across the
processors such that no deadlines are missed during
real-time execution. Before any automatic scheduling
assignments can be made, an approximation for the
maximum execution time of each independent job
must be determined. Assuming no a priori knowledge
of the job execution times, the following algorithm is
used to accomplish this task in as efficient a manner as
possible.

1. Jobs are randomly distributed across all real-time
simulation threads.

2. Each thread performs any necessary initialization
for all jobs assigned to its processor.

3. Each thread performs its jobs a fixed number of
times, tracking the maximum execution time of
each. It is assumed that the observed maximum is
a good estimate.

Once this phase has been completed, the timing
information can be used as input to one of several
load-balancing algorithms that attempt to find a valid
distribution of jobs. The load-balancing problem that
must be solved can be stated as follows:

Let P = {p1, p2, … pn} be the set of n processors and
J = {j1, j2, … jm} be the set of m jobs with associated

6
American Institute of Aeronautics and Astronautics

compute times C = {c1, c2, … cm}. Let L = {l1, l2, …
ln} be the total compute time on each processor, and let
T be the period of a real-time iteration. Determine a
mapping PJf →: such that:

1.
2

1
1∑ = 






 ∑− =n

i n

c

i

m

j jl is minimized

2. Lli ∈∀ , Tli <

Where ∑ == ijfcl ji)(| .

These requirements ensure that the workload is
balanced as evenly across the processors as possible,
and that no processor is overloaded such that deadlines
are missed. This is under the assumption that it is
possible for the given workload to be executed by the
processor set.

While this problem is NP-complete9, an algorithm was
developed that yields near-optimal solutions in a
reasonable amount of time. Jobs are sorted by non-
increasing execution time. Starting with the largest

job, each job is assigned to the processor that is
currently supporting the smallest workload. If a job
cannot be placed, it is assumed that the current
workload cannot be supported in real-time by the given
processor set.

The computational requirements of this algorithm do
not jeopardize real-time deadlines because the
algorithm is initially executed prior to running the
simulation, and may be repeated at non-critical points
of execution after starting (e.g., in a RESET mode).
Within larger scale simulations where faster load-
balancing algorithms are desirable, any algorithm may
be substituted. Much research has been done with
various load-balancing techniques, such that an
effective algorithm can be applied within any arena.

Application of these Techniques to LaSRS++

Both the platform-independent thread abstraction and
the load-balancing algorithm presented above were
incorporated into the LaSRS++ framework. The
relationships between various objects that are central
to the framework are depicted in figure 2. The
sequence of execution, from construction of certain

Thread
impl : ThreadImpl

PositionalModel

doOperateCalc ()
propagateState()
profile()
getMaxTime()

multimap<cpu_id, PositionalModel>

0..n0..n

simStart

1..n

Universe

profileModels(cpu_id)
balanceLoad()
doOperate(cpu_id)
propagateModels(cpu_id)

11

FlightSim
cpu_id

execute()

11

11

SimControl

synchronize()

Figure 2 Relationships Between LaSRS++ Core Classes

7
American Institute of Aeronautics and Astronautics

core objects to synchronous real-time execution, is
depicted in figure 3.

After being launched, the LaSRS++ simulation process
locks the segments of its address space into RAM; sets
its priority to the highest level available on the system;

and isolates, restricts, and disables preemptive
scheduling on each available processor. For each
dedicated processor, the process constructs one
system-scope thread and starts it on this processor.
These threads each begin execution in a function that

ma in T h rea d sim Sta rt Fl i g ht Si m Un iverse Po si t io na lM o de
l

S up e rviso r S im Co n tro l

Th rea d(si m St art)

se tS co p e(SY ST E M)

se tRun O n (n e xt_ re a l t im e _cp u)

star t

Fl ig h tS im

e xecu te
pro fi le M od e ls(cp u _ i d)

p ro fi le g e tT i m e

do Op era teCa lc

p rop a ga te S ta te

g e tT i m e

ba la n ce L o ad

do O p e ra te (cpu _ id)

d oOp erat e Ca lc

syncron ize

p ro pa g ateM o d e l s(cp u_ id)

prop ag a te S t ate

synch ro n i ze

re la ti ve Ge o m etry

j o i n

Ne w threa d o f
e xe cutio n ha s starte d

A ce ss to h ig h
re so lu ti on clo ck

Exe cuted o n e ach
pro fi le m o d e i te ra ti on

Exe cuted o n ly b y
m ai n th re ad

Pe rfo rm ed o n e very
syn chron o us re a l -ti m e i te ra ti on

S im Co n tro l

Sp i n loo p
b a rr ie r

syn chron ize

Figure 3 Core LaSRS++ Sequence Diagram

8
American Institute of Aeronautics and Astronautics

constructs and executes a FlightSim object. At
construction time, the FlightSim object is given the
processor number on which the constructing thread is
running.

In the LaSRS++ framework, the real-time simulation
event loop is defined by the FlightSim execute()
method. Construction and execution of multiple
FlightSim objects by separate Threads results in
multiple simulation event loops executing in parallel.
The event loop consists of several distinct phases,
some of which may not begin until all computations
from the previous phase are complete (i.e. updating
states of positional models must have been completed
before calculation of relative geometry between
models can begin). Each such phase begins with a call
to SimControl::synchronize(). This method is an
implementation of a spin-loop barrier, as previously
discussed, that will not return until it has been called
by all simulation threads. This ensures that all
FlightSim objects are executing the same portion of the
event loop at the same time.

While FlightSim objects represent the encapsulation of
the periodic sequence of events in LaSRS++, Universe
is the maintainer of the simulation model data. All
simulation model objects are derived from
PositionalModel, and are contained within the
Universe singleton. Universe mediates between
PositionalModels and all other components of the
simulation framework, meaning that a PositionalModel
may only be modified through action taken by the
Universe.

To manage the active models during execution, the
Universe has a member data structure that maps each
model to the processor on which it is to be executed.
The structure is a multimap container from the C++
Standard Template Library (STL)5. The multimap
maintains a sorted list of key and value pairs. The pairs
stored in the multimap contained by Universe are the
processor identifiers and PositionalModel objects.
Use of the STL provides a portable and robust data
structure, which has been thoroughly tested and whose
interface is well defined.

Within the multimap, PositionalModels are found
using the processor identifier as the search key.

Correspondingly, all of the Universe’s methods that
act on PositionalModels take a processor number as an
argument. When one of these methods is called, only
the PositionalModels associated with the specified
processor are affected. This allows multiple FlightSim
objects to cause the Universe to modify disjoint
subsets of PositionalModels in parallel.

Among Universe’s methods are profileModels(),
doOperate(), and propagateModels(). ProfileModels()
is used by FlightSim to execute models in order to gain
an estimate of the maximum amount of compute time
that each will take. This information is required to
complete the load-balancing operation. DoOperate()
is used by FlightSim to update the outputs (e.g., forces
and moments) of a model during synchronous real-
time. PropagateModels() is used by FlightSim to
integrate a simulation object’s state and to compute
outputs from the new state that belong to the next
frame.

After the simulation process has been constructed and
initialized, the workload is profiled and balanced
across the available processors. To do this, the
Universe randomly associates an equal number of
PositionalModels with each available real-time
processor. The simulation is initially in PROFILE
mode. In this mode, FlightSim objects call the
Universe’s profileModels() method. Since there is a
FlightSim object for each real-time processor, this
results in all models getting profiled. The main
simulation thread then calls the Universe
balanceLoad() method. Using the algorithm discussed
in the previous section, the Universe modifies the
mapping of PositionalModels to processors within its
multimap such that the load is as evenly distributed as
possible. If a feasible workload distribution does not
exist, the user is informed, and the simulation will not
be allowed to transition to the real-time OPERATE
mode.

After the simulation has transitioned into the
synchronous real-time OPERATE mode, the FlightSim
objects perform the following periodic sequence of
steps:

1. SimControl::synchronize()

9
American Institute of Aeronautics and Astronautics

2. Universe::doOperate()

3. SimControl::synchronize()

4. Universe::propagateModels()

5. SimControl::synchronize()

6. Universe::relativeGeometry()

Experimental Results

The capabilities of the multi-threaded simulation and
the scheduling algorithm were tested with a mixed
workload of transport aircraft, fighters, and missiles.
The models and their associated maximum compute
times are presented in Table 1.

The LaSRS++ real-time simulation runs on an SGI
Onyx with eight processors, three of which are
available for the parallel execution of simulation
threads. The simulation is run at a frame rate of 50
Hz, corresponding to a 20 ms frame time. To

demonstrate the effectiveness of the use of multiple
threads and the load-balancing algorithm, a workload
was created comprised of three B757s, two F/A-18Es,
10 F-15As, and 10 F-16As. Each fighter is equipped
with four launch envelope missiles. Note that without
the use of multiple threads, this workload could not be
executed within real-time constraints.

Figures 4 and 5 demonstrate the effectiveness of the
load-balancing algorithm on the given workload. Prior
to balancing, the number of models for each processor
is similar, but the workload on the first processor is
approaching the upper bound of 20 ms. A slight
variation in the model computations or the system
performance in this configuration could result in a
frame overrun – an unacceptable occurrence in a real-
time simulation. The load-balancing algorithm then
successfully schedules the models in a configuration
that ensures that the load on all processors is well
within the boundaries of the real-time deadlines.

Concluding Remarks

The design has allowed the framework to be compiled
and run on the SGI and the Sun platforms, and it will
be ported to the Linux and Win2000 platforms in the
near future. Moving the framework to a new platform
only requires the development of several

Table 1 Positional Models and Associated Costs

Model Type Cost (ms)

B757 4.35 ms

F/A-18E 6.59 ms

F-15A 0.99 ms

F-16A 0.87 ms

Launch Envelope Missile 0.01 ms

Figure 4 Workload Distribution

Model Distribution

38 38 37
23 21

69

0

20

40

60

80

1 2 3

CPU Number

N
um

be
r O

f M
od

el
s

Before Scheduling After Scheduling

10
American Institute of Aeronautics and Astronautics

implementation classes that can be unit tested before
use with the framework.

The abstractions found in the thread design make the
framework easy to maintain. Any modifications to the
operating system that might require changes to thread,
barrier or lock classes would require changes only to a
platform specific implementation. The modifications
could then be verified using the unit test for the
modified class and would not require extensive re-
testing of the framework itself.

The scheduling algorithm alleviates unnecessary
burden on the simulation operator by providing an
effective solution to the load distribution problem.

Although the design presented in this paper was
originally designed to support flight simulation at
NASA Langley Research Center, the design could be
used in any object-oriented framework to more
effectively utilize the capabilities of symmetric multi-
processor machines.

Bibliography

[1] David Geyer. The Use of Multiple Threads in an
Object Oriented Real-Time Simulation, Paper
Number AIAA 99-4338, August, 1999.

[2] P. Sean Kenney, et al. Using Abstraction to Create

a Portable Object-Oriented Simulation, Paper
Number AIAA 99-4340, August, 1999.

[3] Gamma E., Helm R., Johnson R., Vlissides J.

Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1995.

[4] David R. Butenhof. Programming with POSIX

Threads. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1997.

[5] Nicolai M. Josuttis. The C++ Standard Library: A

Tutorial and Reference. Addison-Wesley
Publishing Company, Reading, Massachusetts,
1999.

[6] Michael Madden, et al. Constructing a Multiple-

Vehicle, Multiple-CPU Using Object-Oriented
C++. Paper Number AIAA-98-4530, August,
1998.

[7] Richard A. Leslie, et al. LaSRS++ An Object-

Oriented Framework for Real-Time Simulation of
Aircraft. Paper Number AIAA-98-4529, August,
1998.

[8] Bill O. Gallmeister. POSIX.4: Programming for

the Real World. O’Reilly & Associates, Inc.
Sebastopol, California, 1995.

11
American Institute of Aeronautics and Astronautics

[9] Christos H. Papadimitriou. Computational
Complexity. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1994.

Figure 5 Model Distribution

Workload Distribution

19.9780

13.958715.2960

11.9394

15.2927 15.2874

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

1 2 3

CPU Number

C
PU

 T
im

e
(m

s)

Before Scheduling After Scheduling

	AIAA-2001-4244
	PLATFORM-INDEPENDENCE AND SCHEDULING IN A MULTI-THREADED REAL-TIME SIMULATION
	
	
	Abstract

