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Abstract*† 
 

Aviation research often relies on real-time, pilot-in-
the-loop flight simulation as a means to develop new 
flight software, flight hardware, or pilot procedures.  
Often these simulations become so complex that a 
single processor is incapable of performing the 
necessary computations within a fixed time-step.  
Threads are an elegant means to distribute the 
computational workload when running on a symmetric 
multi-processor machine.  However, programming 
with threads often requires operating system specific 
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calls that reduce code portability and maintainability.  
While a multi-threaded simulation allows a significant 
increase in the simulation complexity, it also increases 
the workload of a simulation operator by requiring that 
the operator determine which models run on which 
thread.  To address these concerns an object-oriented 
design was implemented in the NASA Langley 
Standard Real-Time Simulation in C++ (LaSRS++) 
application framework.  The design provides a 
portable and maintainable means to use threads and 
also provides a mechanism to automatically load 
balance the simulation models. 

Introduction 

Aviation research often relies on real-time, pilot-in-
the-loop flight simulation as a means to develop new 
flight software, flight hardware, or pilot procedures.  
Concepts involving pilot interaction may require 
concurrent simulation of multiple, independent or 
loosely coupled simulation models.  A single processor 
may not be sufficient to perform all of the necessary 
computations of these complex flight simulations.  A 
means to alleviate this problem is to distribute the 
execution of independent simulation models among 
multiple processors.  Symmetric multi-processor 
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machines allow the independent simulation models to 
be distributed among event loops executing in parallel.  
Each processor must be able to complete the 
computations of the models assigned to it before the 
end of the frame.  Therefore, the number of simulation 
models that can be executed in a real-time multi-
processor simulation is limited by the number of 
processors available for real-time use and by the 
computational requirements of the simulation models. 

Traditionally, multi-processor computers are used by 
starting separate processes on each processor.  The 
processes interact with each other via shared memory, 
message-passing, or some other form of inter-process 
communication (IPC).  While multi-process 
implementations are functional, they are notoriously 
complex, difficult to maintain, and limit the use of 
polymorphism in certain modern object-oriented 
programming languages6.  Multi-threaded solutions, on 
the other hand, allow multiple threads of execution to 
operate within the same address space, eliminating the 
need for IPCs, and eliminating restrictions on the use 
of polymorphism.  Threads are supported by most 
modern operating systems and thereby enable the 
development of an elegant, platform-independent 
solution to the problem of how to simulate multiple 
vehicles concurrently. 

In previous work1 a generic design was presented for 
the use of threads in the Langley Standard Real-Time 
Simulation in C++ (LaSRS++) framework on a multi-
processor machine.  While functional, the design had 
several shortcomings.  First, the design was 
implemented with only the IRIX operating system 
from Silicon Graphics Incorporated in mind.  This 
restricted the framework to only being able to perform 
multi-threaded operations on the IRIX platform.  
Second, the design unnecessarily tied the thread 
classes to the IRIX barrier and lock implementations.  
This coupling increases the difficulty of implementing 
these features on different platforms and maintaining 
the framework during operating system upgrades.  
Clearly a more portable and maintainable design is 
needed.  The design also failed to provide a 
mechanism to determine a feasible simulation model 
distribution for the number of threads available during 
a real-time simulation.  If the distribution selection is 

left to the simulation developer or user, experience 
shows that even in a small-scale simulation, this 
process can be costly, involving educated trial and 
error guesses when a feasible distribution may not 
even exist.  A more effective solution is to provide 
automatic scheduling of each model for execution by a 
particular thread. 

To address these issues, the existing design evolved 
into a new form that is both portable and maintainable 
and provides the mechanisms for an automatic 
scheduling algorithm to distribute a set of simulation 
models across a number of threads, such that the load 
is as uniform as possible. The new design blends the 
pre-existing thread design with the portability 
abstraction used in the LaSRS++ application 
framework for other operating system services2.         

While the application of these techniques in the 
LaSRS++ framework is used for the special purpose of 
flight simulation, the thread design and the automatic 
scheduling algorithm are independent of the purpose of 
the application.  The design is a simple, user-friendly 
solution for the execution of any sequential, real-time 
application, running on a symmetric multi-processor 
architecture, whose iterations can be resolved into two 
or more independent sequences of computation. 

Design Requirements 

A preexisting design for multi-threaded, real-time 
simulation1 was extended to be platform independent 
and incorporate automatic scheduling of models to 
processors.  The design had the following 
requirements for threads: 

1. The design must support a variable number of 
threads selected at run-time. 

2. The design must be portable. 
3. The design must provide a mechanism for thread 

synchronization that does not jeopardize real-time 
deadlines. 

The scheduling algorithm had the following 
requirements: 

1. The algorithm must allow a variable number of 
simulation models to be processed on each thread. 
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2. The algorithm must automatically distribute 
independent components of the workload amongst 
available threads in such a way that real-time 
deadlines are not jeopardized. 

3. The algorithm must recognize if a feasible 
workload distribution does not exist. 

A design that met the above requirements was 
implemented in the LaSRS++ application framework.  
Object-oriented programming techniques were used 
extensively to hide implementation details and 
maximize code reuse.  Well-known design patterns 
were used where appropriate to promote simplicity and 
readability of code, and encapsulate specific platform 
dependencies.  The Bridge, Singleton, Factory and 
Mediator patterns were used extensively3.  Using the 
Bridge pattern, the implementation of an abstraction 
can be changed without affecting clients.  The 
Singleton pattern ensures that there is a single, globally 
accessible instance of a class.  The Factory pattern is a 
specialization of the Singleton pattern that is used to 
encapsulate all platform-dependent, conditional 
compilation.  The Mediator pattern is an encapsulation 
of object interaction that promotes loose coupling by 
preventing objects from interacting directly. 

Operating System Requirements for Real-Time 

In order to build a multi-threaded, real-time simulation 
for a particular symmetric multi-processor platform 
running a general-purpose operating system, the 
operating system must provide certain capabilities.  
Traditional general-purpose time-sharing operating 
systems schedule processes using a preemptive 
scheduling policy.  This means that a process is forced 
to relinquish control of the processor once its time 
slice has expired so that other processes can get 
processor time.  Since hard real-time deadlines could 
be jeopardized by preemption, an operating system 
that can support real-time simulations must provide a 
mechanism for disabling the preemptive scheduler on 
processors reserved for real-time use. 

Traditional time-sharing operating systems also place 
the address space of processes in virtual memory.  
Virtual memory allows the operating system to handle 
loads that are more demanding in terms of space than 
the machine’s random access memory (RAM) will 

allow.  This is accomplished by swapping pages of 
RAM in and out of secondary storage.  Since 
secondary storage access is significantly more costly in 
terms of time than access to RAM, a suitable operating 
system must provide the capability of locking the text 
and data segments of a process into RAM. 

Conventional operating systems for symmetric multi-
processors perform a task called load balancing.  Load 
balancing refers to the migration of processes amongst 
the processors in such a way that the total system load 
is distributed evenly across all available processors.  
Since a real-time thread must never share processor 
resources with other standard processes, the operating 
system must provide a mechanism for forcing a thread 
to run on a particular processor. 

By default, the operating system is usually unaware of 
multiple threads of execution within an address space, 
leaving the scheduling of these threads as a task for the 
process.  This type of thread is commonly referred to 
as a process-scope thread.  However, for multi-
threaded real-time simulation applications, multiple 
threads must be executing in parallel, which by 
definition is impossible for process-scope threads.  The 
operating system must provide a mechanism for 
creating threads that are schedulable by the kernel 
rather than from within the process.  This type of 
thread is commonly called a system-scope or kernel 
thread. 

If a general-purpose operating system has all of these 
capabilities, it is suitable for multi-threaded, real-time 
simulation.  Each thread of such a simulation must be a 
system-scope thread within a process that has been 
locked into RAM, set to run on a dedicated processor, 
with preemptive scheduling disabled. 

Object-Oriented Approach to Threads 

The C++ language does not provide any direct (object-
oriented) support for multi-threaded programming.  
Two types of classes are required for developing 
object-oriented, multi-threaded applications.  These 
are classes that represent threads, and classes 
representing thread synchronization mechanisms.  
Thread synchronization mechanisms include mutexes 
and barriers.  The mutex is a mechanism that ensures 
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mutually exclusive access to data or to non-thread-safe 
portions of code (critical sections) in a multi-threaded 
process.  The barrier provides a collection point for 
some specified number of threads of execution, and 
ensures that none continue until the specified number 
of threads have arrived. 

Classes were developed for the LaSRS++ application 
framework that provide a platform-independent 
interface to thread, mutex, and barrier facilities.  For 
each of these services, the bridge and factory design 
patterns were used.  The bridge pattern prevents clients 
of thread-related services from being affected by 
implementation details.  This allows the 
implementation portion of these classes to be changed 
without requiring any modification to client 
components.  The factory design pattern encapsulates 

all platform-specific and build-option-determined 
conditional compilation.  This significantly improves 
the portability and maintainability of the LaSRS++ 
framework code. 

Figure 1 shows a UML class diagram of the LaSRS++ 
thread implementation.  When a client constructs a 
new Thread, ThreadImplFactory constructs the 
appropriate implementation (ThreadImpl).  The 
specific type of implementation is transparent to the 
client.  The LaSRS++ design for Barrier and Mutex is 
analogous to the design for Thread. 

To further increase the maintainability of the thread 
implementation, the interfaces of the thread-related 
abstraction classes were structured after the Portable 
Operating System Interface (POSIX) standard, 
commonly called pthreads.  Pthreads are currently 

ThreadImplFactory

instance()
destroyIns tance()
makeThreadImpl()

SprocThreadImpl

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

PosixThreadImpl

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

Thread
impl : ThreadImpl

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

ThreadImpl
cpu_id

start()
join()
detach()
cancel()
setRunOn()
getRunOn()
setScope()

Factory 
pattern

Interface 
portion of 
bridge

Abstract 
implementor 
portion of 
bridge

Concrete 
implementor 
portion of 
bridge

IrixPosixThreadImpl

setRunOn()

Figure 1 Thread Design 
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supported under several variants of the UNIX 
operating system including Solaris, Digital UNIX, 
IRIX, and Linux4.  As a result, the use of pthreads 
allows us to build on any of these platforms using the 
PosixThreadImpl as the concrete implementation 
portion of the bridge.  This source-code portability is 
beneficial in an environment of potentially frequent 
architecture changes8. 

A requirement of the multi-threaded simulation 
uncovers a deficiency in the POSIX standard.  There is 
nothing in the POSIX application programming 
interface (API) for specifying a particular processor on 
which a thread must run.  This eliminates the 
possibility of constructing a completely platform-
independent concrete thread implementation for multi-
threaded, real-time applications.  A system-scope 
pthread may be scheduled on a specific processor for 
its lifetime, but the call to do this is platform-specific.  
However, due to the use of the factory and bridge 
design patterns, the work required to implement 
platform-specific pthreads is minimal.  The 
PosixThreadImpl class has a virtual method 
setRunOn() that takes the processor number as an 
argument.  To create a pthread that will run 
successfully on the IRIX operating system, a class 
named IrixPosixThreadImpl was created. This class 
inherits from PosixThreadImpl and overrides the 
setRunOn() method with the IRIX-specific system call 
for running a thread on a given processor.  In this way, 
the reuse of the existing thread classes is maximized, 
thus minimizing the work required for implementing 
platform-specific thread models. 

Real-Time Thread Synchronization 

While each thread in a multi-threaded real-time 
simulation is operating on independent tasks, there is 
often some portion of the event loop that cannot be 
executed before all threads have completed a certain 
portion of their task.  An example of this is 
computation of relative geometry between simulation 
models.  Regardless of how relative geometry 
computations are distributed, the state of all models 
must have been updated before any of these 
computations can take place.  A barrier mechanism is 
used to implement this sort of rendezvous. 

Operating systems supporting multi-threaded programs 
also support barrier mechanisms.  Programs that are 
not subject to strict real-time deadlines should 
generally use the operating system supplied barrier 
facility.  However, if a thread blocks on a barrier 
system call, it may not be guaranteed to resume 
execution within an acceptable amount of time to meet 
a real-time deadline.  The alternative is to implement a 
spin-loop barrier mechanism.  In this barrier, a primary 
thread waits at the barrier for all remaining threads to 
arrive.  As each thread arrives, it locks itself and waits 
in a spin-loop conditioned on the value of that lock.  
Once all threads have arrived, the primary thread 
releases the lock for each remaining thread, and all 
threads may continue. 

Scheduling Algorithm 

Efficient thread synchronization alone does not 
guarantee that real-time deadlines will be met.  The 
computational load must be balanced across the 
processors such that no deadlines are missed during 
real-time execution.  Before any automatic scheduling 
assignments can be made, an approximation for the 
maximum execution time of each independent job 
must be determined.  Assuming no a priori knowledge 
of the job execution times, the following algorithm is 
used to accomplish this task in as efficient a manner as 
possible. 

1. Jobs are randomly distributed across all real-time 
simulation threads. 

2. Each thread performs any necessary initialization 
for all jobs assigned to its processor. 

3. Each thread performs its jobs a fixed number of 
times, tracking the maximum execution time of 
each.  It is assumed that the observed maximum is 
a good estimate. 

Once this phase has been completed, the timing 
information can be used as input to one of several 
load-balancing algorithms that attempt to find a valid 
distribution of jobs.  The load-balancing problem that 
must be solved can be stated as follows: 

Let P = {p1, p2, … pn} be the set of n processors and 
J = {j1, j2, … jm} be the set of m jobs with associated 
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compute times C = {c1, c2, … cm}.  Let L = {l1, l2, … 
ln} be the total compute time on each processor, and let 
T  be the period of a real-time iteration.  Determine a 
mapping PJf →:  such that: 

1. 
2

1
1∑ = 






 ∑− =n

i n

c

i

m
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2. Lli ∈∀ , Tli <  

Where ∑ == ijfcl ji )(| . 

These requirements ensure that the workload is 
balanced as evenly across the processors as possible, 
and that no processor is overloaded such that deadlines 
are missed.  This is under the assumption that it is 
possible for the given workload to be executed by the 
processor set. 

While this problem is NP-complete9, an algorithm was 
developed that yields near-optimal solutions in a 
reasonable amount of time.  Jobs are sorted by non-
increasing execution time.  Starting with the largest 

job, each job is assigned to the processor that is 
currently supporting the smallest workload.  If a job 
cannot be placed, it is assumed that the current 
workload cannot be supported in real-time by the given 
processor set. 

The computational requirements of this algorithm do 
not jeopardize real-time deadlines because the 
algorithm is initially executed prior to running the 
simulation, and may be repeated at non-critical points 
of execution after starting (e.g., in a RESET mode).  
Within larger scale simulations where faster load-
balancing algorithms are desirable, any algorithm may 
be substituted.  Much research has been done with 
various load-balancing techniques, such that an 
effective algorithm can be applied within any arena. 

Application of these Techniques to LaSRS++ 

Both the platform-independent thread abstraction and 
the load-balancing algorithm presented above were 
incorporated into the LaSRS++ framework.  The 
relationships between various objects that are central 
to the framework are depicted in figure 2.  The 
sequence of execution, from construction of certain 

Thread
impl : ThreadImpl

PositionalModel

doOperateCalc ()
propagateState()
profile()
getMaxTime()

multimap<cpu_id, PositionalModel>

0..n0..n

simStart

1..n

Universe

profileModels(cpu_id)
balanceLoad()
doOperate(cpu_id)
propagateModels(cpu_id)

11

FlightSim
cpu_id

execute()

11

11

SimControl

synchronize()

Figure 2 Relationships Between LaSRS++ Core Classes 
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core objects to synchronous real-time execution, is 
depicted in figure 3. 

After being launched, the LaSRS++ simulation process 
locks the segments of its address space into RAM; sets 
its priority to the highest level available on the system; 

and isolates, restricts, and disables preemptive 
scheduling on each available processor.  For each 
dedicated processor, the process constructs one 
system-scope thread and starts it on this processor.  
These threads each begin execution in a function that 
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e xecu te
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p ro fi le g e tT i m e

do Op era teCa lc

p rop a ga te S ta te

g e tT i m e

ba la n ce L o ad

do O p e ra te (cpu _ id )

d oOp erat e Ca lc

syncron ize

p ro pa g ateM o d e l s(cp u_ id )

prop ag a te S t ate

synch ro n i ze

re la ti ve Ge o m etry

j o i n

Ne w threa d  o f 
e xe cutio n  ha s starte d

A ce ss to  h ig h  
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Exe cuted  o n  e ach  
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syn chron o us re a l -ti m e i te ra ti on

S im Co n tro l

Sp i n loo p  
b a rr ie r

syn chron ize

Figure 3 Core LaSRS++ Sequence Diagram 
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constructs and executes a FlightSim object.  At 
construction time, the FlightSim object is given the 
processor number on which the constructing thread is 
running. 

In the LaSRS++ framework, the real-time simulation 
event loop is defined by the FlightSim execute() 
method.  Construction and execution of multiple 
FlightSim objects by separate Threads results in 
multiple simulation event loops executing in parallel.  
The event loop consists of several distinct phases, 
some of which may not begin until all computations 
from the previous phase are complete (i.e. updating 
states of positional models must have been completed 
before calculation of relative geometry between 
models can begin).  Each such phase begins with a call 
to SimControl::synchronize().  This method is an 
implementation of a spin-loop barrier, as previously 
discussed, that will not return until it has been called 
by all simulation threads.  This ensures that all 
FlightSim objects are executing the same portion of the 
event loop at the same time. 

While FlightSim objects represent the encapsulation of 
the periodic sequence of events in LaSRS++, Universe 
is the maintainer of the simulation model data.  All 
simulation model objects are derived from 
PositionalModel, and are contained within the 
Universe singleton.  Universe mediates between 
PositionalModels and all other components of the 
simulation framework, meaning that a PositionalModel 
may only be modified through action taken by the 
Universe.   

To manage the active models during execution, the 
Universe has a member data structure that maps each 
model to the processor on which it is to be executed.  
The structure is a multimap container from the C++ 
Standard Template Library (STL)5.  The multimap 
maintains a sorted list of key and value pairs. The pairs 
stored in the multimap contained by Universe are the 
processor identifiers and PositionalModel objects.  
Use of the STL provides a portable and robust data 
structure, which has been thoroughly tested and whose 
interface is well defined.   

Within the multimap, PositionalModels are found 
using the processor identifier as the search key.  

Correspondingly, all of the Universe’s methods that 
act on PositionalModels take a processor number as an 
argument.  When one of these methods is called, only 
the PositionalModels associated with the specified 
processor are affected.  This allows multiple FlightSim 
objects to cause the Universe to modify disjoint 
subsets of PositionalModels in parallel. 

Among Universe’s methods are profileModels(), 
doOperate(), and propagateModels().  ProfileModels() 
is used by FlightSim to execute models in order to gain 
an estimate of the maximum amount of compute time 
that each will take.  This information is required to 
complete the load-balancing operation.  DoOperate() 
is used by FlightSim to update the outputs (e.g., forces 
and moments) of a model during synchronous real-
time.  PropagateModels() is used by FlightSim to 
integrate a simulation object’s state and to compute 
outputs from the new state that belong to the next 
frame. 

After the simulation process has been constructed and 
initialized, the workload is profiled and balanced 
across the available processors.  To do this, the 
Universe randomly associates an equal number of 
PositionalModels with each available real-time 
processor.  The simulation is initially in PROFILE 
mode.  In this mode, FlightSim objects call the 
Universe’s profileModels() method.  Since there is a 
FlightSim object for each real-time processor, this 
results in all models getting profiled.  The main 
simulation thread then calls the Universe 
balanceLoad() method.  Using the algorithm discussed 
in the previous section, the Universe modifies the 
mapping of PositionalModels to processors within its 
multimap such that the load is as evenly distributed as 
possible.  If a feasible workload distribution does not 
exist, the user is informed, and the simulation will not 
be allowed to transition to the real-time OPERATE 
mode.  

After the simulation has transitioned into the 
synchronous real-time OPERATE mode, the FlightSim 
objects perform the following periodic sequence of 
steps: 

1. SimControl::synchronize() 
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2. Universe::doOperate() 

3. SimControl::synchronize() 

4. Universe::propagateModels() 

5. SimControl::synchronize() 

6. Universe::relativeGeometry() 

Experimental Results  

The capabilities of the multi-threaded simulation and 
the scheduling algorithm were tested with a mixed 
workload of transport aircraft, fighters, and missiles.   
The models and their associated maximum compute 
times are presented in Table 1. 

The LaSRS++ real-time simulation runs on an SGI 
Onyx with eight processors, three of which are 
available for the parallel execution of simulation 
threads.  The simulation is run at a frame rate of 50 
Hz, corresponding to a 20 ms frame time.  To 

demonstrate the effectiveness of the use of multiple 
threads and the load-balancing algorithm, a workload 
was created comprised of three B757s, two F/A-18Es, 
10 F-15As, and 10 F-16As.  Each fighter is equipped 
with four launch envelope missiles.  Note that without 
the use of multiple threads, this workload could not be 
executed within real-time constraints. 

Figures 4 and 5 demonstrate the effectiveness of the 
load-balancing algorithm on the given workload.  Prior 
to balancing, the number of models for each processor 
is similar, but the workload on the first processor is 
approaching the upper bound of 20 ms. A slight 
variation in the model computations or the system 
performance in this configuration could result in a 
frame overrun – an unacceptable occurrence in a real-
time simulation.  The load-balancing algorithm then 
successfully schedules the models in a configuration 
that ensures that the load on all processors is well 
within the boundaries of the real-time deadlines. 

Concluding Remarks 

The design has allowed the framework to be compiled 
and run on the SGI and the Sun platforms, and it will 
be ported to the Linux and Win2000 platforms in the 
near future.  Moving the framework to a new platform 
only requires the development of several 

Table 1 Positional Models and Associated Costs 

Model Type Cost (ms) 

B757 4.35 ms 

F/A-18E 6.59 ms 

F-15A 0.99 ms 

F-16A 0.87 ms 

Launch Envelope Missile 0.01 ms 

Figure 4 Workload Distribution 
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implementation classes that can be unit tested before 
use with the framework. 

The abstractions found in the thread design make the 
framework easy to maintain.  Any modifications to the 
operating system that might require changes to thread, 
barrier or lock classes would require changes only to a 
platform specific implementation.  The modifications 
could then be verified using the unit test for the 
modified class and would not require extensive re-
testing of the framework itself. 

The scheduling algorithm alleviates unnecessary 
burden on the simulation operator by providing an 
effective solution to the load distribution problem.  

Although the design presented in this paper was 
originally designed to support flight simulation at 
NASA Langley Research Center, the design could be 
used in any object-oriented framework to more 
effectively utilize the capabilities of symmetric multi-
processor machines. 
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