
1

American Institute of Aeronautics and Astronautics

AIAA 2001-4057

A UNIQUE SOFTWARE SYSTEM FOR
SIMULATION-TO-FLIGHT RESEARCH

Victoria I. Chung*, Brian K. Hutchinson*
NASA Langley Research Center

MS 125B
Hampton, VA 23681

Abstract
 “Simulation-to-Flight” is a research development
concept to reduce costs and increase testing efficiency
of future major aeronautical research efforts at NASA.
The simulation-to-flight concept is achieved by using
common software and hardware, procedures, and
processes for both piloted-simulation and flight testing.
This concept was applied to the design and
development of two full-size transport simulators, a
research system installed on a NASA B-757 airplane,
and two supporting laboratories. This paper describes
the software system that supports the simulation-to-
flight facilities. Examples of various simulation-to-
flight experimental applications were also provided.

Introduction
In 1974, NASA Langley Research Center (LaRC)
obtained a research airplane, a Boeing 737-100 series
aircraft, to conduct aviation systems and operational
research for the Advanced Transport Operating Systems
(ATOPS) program. The standard airplane systems were
modified and interfaced to a separate research system.
The airplane was named the Transport Systems
Research Vehicle (TSRV) and could be flown from
take-off through landing from the conventional forward
flight deck or from a full-size, two-crewmember,
research aft flight deck (AFD). The AFD was located
in the passenger cabin. Thrust and flight control inputs
were made by the AFD crew through control inceptors
or through a research autopilot system via a fly-by-wire
computer system. During flight research operations,
the AFD was generally flown by test subject crews
while the forward flight deck was manned by safety

* Computer Engineer, Systems Development Branch
Copyright  2001 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S. Code.
The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein
for Governmental purposes. All other rights are
reserved by the copyright owner.

pilots to monitor, engage, and disengage the aft flight
deck as an in-flight safety measure.

Besides the aft flight deck, the research system installed
in the airplane consisted of four other major
experimental subsystems: three flight control
computers, a navigation and guidance system, an
electronic display system, and a data acquisition
system1. Navigation, guidance, and flight control
computer software were hosted on a MicroVAX
computer, while the display software was hosted on
another MicroVAX computer. An integrated Air Data
Inertial Reference System (ADIRS) unit was used to
provide accelerations, velocities, airplane position, and
standard air data information to the research system.
An experimental digital data bus called the Digital
Autonomous Terminal Access Communications
(DATAC) was developed to provide transport data
from various sensors and research pallets throughout
the airplane. The DATAC was a copper-based physical
communication media which was later commercially
recognized as a prototype of the ARINC 629 standard
and was used as a computing network between research
subsystems.

A development, verification, and validation laboratory,
known as the Experimental Avionics Systems
Integration Laboratory (EASILY), was used to develop,
integrate, and preflight-validate the hardware and
software systems for a TSRV flight test. The EASILY
was equipped with VAX 4000-200 computers to
provide simulation modeling, flight management
system software, data acquisition functions, and graphic
display generation. Interface units for testing signals
associated with the ADIRS unit and the DATAC unit
were also installed in the EASILY to mimic the
architecture onboard the TSRV airplane.2

A ground-based simulator, similar to the AFD in the
TSRV airplane, was built and used to conduct
simulation-only or simulation and flight test research
sponsored by the ATOPS program. The TSRV
simulator was equipped with eight electronic monitors,

2

American Institute of Aeronautics and Astronautics

each with 6.5-in square viewing area. Two monitors
were mounted in front of each pilot to display flight
guidance and situation information and four touch-
screen equipped displays were mounted in the center
panel for engine information and multi-function tasks
related to flight research operations. The TSRV
simulator cab had an out-the-window visual scene
capability, two two-axis programmable side stick
controllers, two spring-loaded rudder pedals with toe
brake systems, a voice actuated command system
(VOTAN), and two Control Display Units (CDUs)
installed. Simulation modeling was hosted on two
Convex computers, and the flight instrumentation
displays were generated by a Eagle 1000 Calligraphic
Raster Display System (CRDS) from Terabit Computer
Engineering. Communications between the Convex
computers, the CRDS, and the simulator cabs were
accomplished through a Computer Automated
Measurement and Control (CAMAC) network using a
high-speed fiber optic link configured in a star network
between computers and simulator sites.3

Due to the differences between host computers,
graphics systems, and communication architecture in
the TSRV simulation and in the flight research system
on the TSRV airplane, FORTRAN programmed
software created at one facility could not be directly
reused at another facility. This resulted in two separate
developments, one for the simulation and one for the
airplane, to be done to for the same set of research
requirements and testing. These differences in facilities
also caused difficulties for correlation of simulation
data with flight test data. Langley Research Center
decided to make major upgrades to both their ground-
based simulation facilities and the flight research
systems to be able to support the research requirements
for current and future major NASA aviation programs.
A simulation-to-flight concept was developed to
improve the efficiencies of simulation and flight-
testing. The simulation-to-flight concept used the rapid
advances in computer and display technology and was
based on using common hardware, software, and
procedures for both simulation and flight-testing. This
report will describe the system level perspectives of the
simulation and flight facilities as background
information followed by detailed descriptions of the
common software for these facilities. The descriptions
focus on the key element, the commonality between
these facilities, which makes the simulation-to-flight
concept successful.

Transport Research Facilities
Overview
The simulation-to-flight concept was the basis used
during the design, development, and implementation of
the Transport Research Facilities (TRF). The TRF are

comprised of the Airborne Research Integrated
Experiments System (ARIES) B-757 airplane, the
Research System Integration Laboratory (RSIL), the
Flight System Integration Laboratory (FSIL), the
Cockpit Motion Facilities (CMF), and two simulators--
the Integration Flight Deck (IFD) and the Research
Flight Deck (RFD).

Inside the ARIES B-757 airplane is the Transport
Research System (TRS) which is the electronic system,
located in the cabin of the B-757, that drives the Flight
Deck Research Station (FDRS) located on the left-hand
side of the cockpit. The electronic flight displays in the
FDRS are driven by the TRS.

The Cockpit Motion Facility (CMF) is a building that
contains spaces for four simulator cabs including the
RFD and IFD simulators, a motion platform, a lifting
crane to move the simulator cabs on and off of the
motion platform, the RSIL, and the interface between
the simulator cabs, the RSIL, and the computers. The
RSIL is a laboratory that contains a duplicate of the
Transport Research System contained on the ARIES B-
757 airplane. The IFD and RFD simulators and the
RSIL are used to support research program
requirements and to develop and validate hardware and
software needed for flight test purposes onboard the
ARIES NASA B-757 airplane.

The Flight Systems Integration Laboratory is located in
the hanger adjacent to the ARIES B-757 airplane. The
FSIL is used for integration and maintenance of the TRS
on the airplane.

The simulation-to-flight concept used to design and
develop the TRF was based on past experience and the
research community’s desire for a streamlined
simulation-to-flight process. One of the major design
goals of the simulation-to-flight concept was for the
transport research system onboard the ARIES B-757 to
readily accept software from the simulation environment
to increase the efficiency and reduce the cost of
implementing and conducting research tests. To satisfy
this goal, common hardware and software were
implemented in the research systems onboard the ARIES
B-757 airplane, in the test labs, and in the simulators.
This common system is the TRS. The simulation-to-
flight vision of conducting research from concept
formulation on a workstation to ground-based testing
with a simulator, then to flight test onboard a research
aircraft is illustrated in Figure 1.

The simulation and flight software in the TRS was
developed using an Object-oriented (OO) methodology
for designing and programming modular and robust

3

American Institute of Aeronautics and Astronautics

Simulation-to-Flight Vision

Research
Concept

Simulation
test

Flight
test

Research
System

Integration Lab

“Simulation-to-flight” concept
combines simulation & airplane
software/hardware implementation

Direct to flight

Simulation,
then flight test

Software/hardware development

Programming
Workstation

Figure 1. Simulation-to-Flight Vision

4

American Institute of Aeronautics and Astronautics

software. This OO methodology produced software that
was easy to maintain and reuse, resulting in an increase
in the reliability and development productivity.

Airborne Research Integrated Experiments System
(ARIES) B-757 Airplane
Figure 2 is a recent picture of the NASA ARIES B-757
airplane. The ARIES B-757 airplane was the second B-
757 airplane built. Its first flight was in March 1983.
The Boeing Company used this airplane for the initial
certification of the 757’s. The airplane was then flown
by Eastern Airlines as a revenue-flight aircraft. The
airplane was purchased by NASA from the Eastern
Airlines Bankruptcy estate in 1994.

After acquiring the airplane, NASA designed and
implemented a research system in the cockpit and cabin
of the airplane to support flight testing for the next 20
years. The type of testing envisioned included concept
developments for increasing the safety of commercial
jet transportation, increasing airport and airway system
capacity, and to increase the United States’ economic
growth relating to the air transport system.

Flight Deck Research Station (FDRS)
The FDRS has two dedicated flight instrument CRTs
(an Attitude Director Indicator--ADI and a Navigation
Display--ND), a Head-up display (HUD), control
panels for the dedicated flight displays, and a Control
Display Unit (CDU) for the research system flight
management computer (FMC).

Other instrumentation and controls used in the FDRS
are unmodified, conventional B-757 flight deck
equipment. This equipment includes all other flight
instruments and controls (including the airspeed,
altimeter, vertical speed indicator, standby instruments),
the engine indication and crew alerting system
(EICAS), mode control panel (MCP) controls and logic,
manual- and auto-throttles, autopilot, and manual flight
controls . The test subject sits in the left-hand seat and
the pilot-in-command (PIC) sits in right-hand seat. A
second safety pilot will normally sit in a flight deck
jump seat to assist and monitor flight operations. 4

Transport Research System (TRS)
Figure 3 shows the high level view of the FDRS and
TRS onboard the ARIES B-757. The TRS is composed
of various subsystems including a Silicon Graphics
Incorporated (SGI) Application Onyx computer, an
input and output (I/O) concentrator, a flight
management computer subsystem, a data acquisition
subsystem, a Global Positioning System (GPS) and
Differential GPS subsystem, a data link subsystem, and
a Shared Common Random Access Memory Network

(SCRAMNet+). The SCRAMNet+ is a high-speed
fiber optic replicated shared memory communication
network manufactured by the Systran Corporation.
Each TRS subsystem is installed on a pallet in the
ARIES cabin. Different subsystems of the TRS
interface with the SCRAMNet+ through VME-based
chassises. Each VME chassis consists of a Motorola
PowerPC MVME-1604 embedded processor board,
which utilizes a 133 MHz MPC604 PowerPC
processor, running VxWorks 5.3 as the real-time
operating system.

The Application Onyx computer is used to process
research applications and to generate research displays
in the FDRS. The I/O concentrator is the interface
between the aircraft sensors and other research
subsystems of the TRS. The I/O concentrator is a VME
chassis consisting of a basic Motorola Power PC
processor board, a Datum time and frequency module, a
SCRAMNet+ module, analog input and output cards,
discrete input and output cards, Condor ARINC 429
cards, and a VME bus analyzer. The Datum time and
frequency module is used to provide an accurate time
source derived from the Ashtech GPS receiver for TRS.
The flight management computer subsystem also
consists of a VME chassis, a Honeywell flight
management computer Product Improvement Package
(FMC PIP), a Smiths Industry CDU, an Ashtech GPS
receiver, and two Fieldworks laptop PCs. The FMC
PIP is used to provide navigation and guidance in the
FDRS. The data acquisition system is used for
recording and limited post processing flight-test data.
The data acquisition system consists of an Intel Pentium
III personal computer with a 133 MHz CPU.5

Research System Integration Laboratory (RSIL) and
Flight System Integration Laboratory (FSIL)
Clones of the TRS were implemented in two ground-
based laboratories, the Research System Integration
Lab (RSIL) and the Flight System Integration Lab
(FSIL), to provide flight software and hardware
development, integration, validation, and maintenance
capabilities under the same research system architecture
of the ARIES B-757. A Simulation VME chassis exists
to provide the TRS an interface with either the RFD or
the IFD simulator, to facilitate an arena for end-to-end
simulation and testing of applications migrating to the
ARIES. A flight control computer (FCC) VME chassis
is equipped with triplicate FCC’s to accommodate
ground testing of research applications with actual
flight-rated FCC’s or with a simulated version of FCC’s
from the simulation software. The RSIL and FSIL
could also operate without any actual simulator cab by
using a RSIL Operator’s Station. The Operator’s
Station consists of an attitude display and a map

5

American Institute of Aeronautics and Astronautics

Figure 2. ARIES B-757 Airplane

6

American Institute of Aeronautics and Astronautics

Discretes &
ARINC 429

Figure 3. Flight Deck Research Station and Transport Research System Onboard ARIES

 TRS
 ONYX
Computer

 TRS
SCRAMNet

 Flight
Management

System
 VME

FMC-PIP

 I/O

Concentrator

 Data

Acquisition

System

Transport Research System

FDRS Elements

TRS Elements

HUD

Conventional Airplane
Elements

CDU CDU

EDCP

ND

ADI

EADI

EADI

ND

ADI

Mode Control Panel

CDU

GPS, DGPS,
and

Data Link

ARINC 429
Link

Video
Lines

 RS232, Discretes,
 & ARINC 429

7

American Institute of Aeronautics and Astronautics

display, a Mode Control Panel to select the autopilot
and flight guidance options, and an electronic display
control panel to perform an engineering checkout.
Figure 4 illustrates the configuration of the RSIL with
the IFD or RFD simulator in the loop.

Research Flight Deck (RFD) and Integration Flight
Deck (IFD) Simulators
The RFD and the IFD simulators are used to provide
simulated flight deck environment and functionality for
researchers to conduct pilot-in-the-loop aviation
experiments. The Research Flight Deck (RFD)
simulator cab was designed to represent an advanced,
two-crewmember, subsonic jet transport airplane. The
cab layout was based on the “best” components
contained in the Boeing 777, 747-400, and MD-11, the
Airbus series of airplanes, and the NASA B-737
Transport Research System Vehicle airplane.

The RFD cockpit contains eight “D-size” CRT displays,
hydraulic side-stick controllers that are back-driven by
the autopilot system, and a flight management system
with two control display units. Subsystems and control
panels are based on those of a B-757 airplane. The
cockpit is designed to be modular so that cockpit
configuration may be changed appropriately to satisfy
research requirements.6 Figure 5 is a recent picture of
the RFD simulator.

The Integration Flight Deck (IFD) simulator cab is an
engineering cab designed to represent the flight deck of
the NASA ARIES B-757 airplane. The cab is
populated with flight instrumentation, including the
overhead subsystem panels, to replicate the B-757.
Simulation software is hosted on a Simulation Onyx
which communicates simulated aircraft responses and
pilot inputs with the TRS in RSIL or FSIL via the
SCRAMNet+. The IFD cab is used for flight testing
development for the ARIES B-757 and for aircraft
system integration studies. Figure 6 is a recent picture
of the IFD simulator.

Both the IFD and RFD cockpits contain a “Panorama”
visual out-the-window display system. This system
provides a 200-degree by 40-degree visual out-the-
window display to add realism to piloted experiments.
Databases for nine different airports that contain other
airplanes, trucks, and service vehicles found at airports
can be projected dynamically on the out-the-window
scene. Other airports may be added if required to
satisfy research needs.

Software System
Before 1995, the simulation software was programmed
in the FORTRAN language. The structure of this

software architecture was procedural in nature.
Software that dealt with multiple vehicle simulations
were hard coded with a fixed number of vehicles and
vehicle types to reduce the complexity in developing
and maintaining a flexible multiple vehicle simulation.
The desire to improve the efficiency in simulation
development, productivity of the software developers,
and the flexibility of operating multiple vehicle
simulation in a real-time computing environment led to
the evaluation and development of a simulation
software framework that was designed in OO fashion
and programmed in C++ language. This software
framework was named the NASA Langley Standard
Real-Time Simulation in C++ (LaSRS++). 7

The simulation-to-flight concept requirement of using
common software and hardware for all TRF called for
the need to produce software that was flexible and that
could be adapted or reused for multiple purposes. The
successful evolution of LaSRS++ simulation software
was timely for implementing this design approach. OO
designed software could be used to hide the hardware
details behind a common class interface. Different
hardware interfaces could be easily substituted and used
with the same software interface. This is the familiar
OO approach of ‘programming to an interface’. This
approach involves abstracting implementation details
and isolating them from the application. Also, with this
approach, software components could move easily from
the unit test stage to simulation, and then to a flight test.

A rigorous software development process has been
utilized to ensure that software is thoroughly designed,
developed, and tested before using it for a flight test
operation. The objective of this process is to provide
optimum mission and safety assurance. Figure 7 shows
the software development process that includes the
verification and validation process. Several
commercial-off-the-shelf software products are used as
development tools throughout the software
development lifecycle. The software design tool,
Rational Rose, from the Rational Software Corporation,
is used to visualize and construct software design
artifacts through Unified Modeling Language (UML).
Other tools from the Rational Software Corporation
include Rational ClearCase for software configuration
management, Rational Purify for debugging run-time
errors and memory management issues, and Rational
Quantify for highlighting performance and identifying
bottlenecks and untested code in applications. SGI’s
ProDev Workshop is also used as development tool for
similar purposes. Code documentation is implemented
by the shareware Doc++ software tool. The TRS
software system consists of common and facility
specific software. Facility specific software provides

8

American Institute of Aeronautics and Astronautics

Analog,
Discrete, and
ARINC 429

Lines

 Application
 Onyx

Computer

 I/O
Concentrator
 VME

 Flight
Management

System
 VME

 TRS
SCRAMNet

FMC-PIP

 Simulation

 Onyx

Computer

 RFD or IFD
 VME

 RFD or IFD

 Displays

 RFD or IFD

Controls

 RFD or IFD
Simulator

Research System Integration Lab (RSIL)

Figure 4. TRS Residing in RSIL with RFD or IFD for End to End Testing

Simulator-Specific Elements

TRS Elements

Operator’s
 Station

Switch between Sim
Cab and Op Station

 SIM

 SCRAMNet
Simulation

VME

Video Lines

Analog,
Discrete, and
ARINC 429

Lines

Discrete and
ARINC 429

Lines

9

American Institute of Aeronautics and Astronautics

Figure 5. Research Flight Deck Simulator

Figure 6. Integration Flight Deck Simulator

10

American Institute of Aeronautics and Astronautics

Documentation

Requirements
Analysis

Detailed
Design

Code Development

Unit Test

Integration Test

Production

Preliminary
Design

Researcher Checkout

PDR

CDR Code Review

Validation

Validation

Verification

Figure 7. Software Development Process

11

American Institute of Aeronautics and Astronautics

simulation functionality exclusively. Figure 8 shows
the Work Breakdown Structure of the software system.

TRS Software Design
The following designs discussed and depicted have
many details eliminated to emphasize the prominent
features. They demonstrate that a solid but flexible
underlying communication framework has resulted in
somewhat consistent designs. Object oriented purists
would point out many procedural characteristics in the
designs, a fact that is undeniable. However, throughout
the lifecycle, the TRS has met hard implementation
schedules resulting in a more pragmatic approach.
Certain particular design characteristics are prevalent
because they naturally de-coupled class relationships
making them easier to migrate from one environment to
another. The containment by aggregation rather than
derivation and the use of mediation also makes
incremental testing easier. Other design patterns used
are factory, builder, and singleton. A formalized
approach to these patterns may be found in the book
Design Patterns by Gamma, et al8.

LaSRS++ Framework Communication
The simulation systems and the TRS high speed I/O are
built on Systran Corporation's SCRAMNet+ high speed
network and Motorola Power PCs operating in VME
back-planes using the WindRiver VxWorks real-time
operating system. Each SCRAMNet+ node is
configured with two megabytes of memory and fiber
optics media adapters. The baseline TRS consists of
two VME crates with Power PC MV1604 processors
and a Silicon Graphics Onyx computer connected in a
network using a Systran Quad Switch. The VMEs are
populated with various I/O cards and each serves a
specific function. The VME on the IO Concentrator
receives ARINC digital signals from the various basic
B-757 systems buses (Inertial Reference System/Air
Data Computer/EICAS/Radar Altimeter) and is the
primary source of data for ARIES B-757. A second
VME provides communications with a Honeywell FMC
which is separate from the basic B-757 systems FMCs.
The Onyx contains eight 195 MHz MIPS R4400 CPUs
with three graphics pipes connected to a Multi Channel
Option that provide three video outputs from each pipe.

To avoid hard-wired addresses for variables and the
conflicts that arise in connecting arbitrary combinations
of SCRAMNet+ nodes with different configurations,
the SCRAMNet+ memory is managed through an
allocation scheme that supports initialization from
configuration files and runtime allocation. The
mechanism is a simple table in memory that associates
block names (ASCII) with addresses for data blocks in
SCRAMNet+ memory. A special system state area
contains information about the state of the system.

When the controlling computer (system master) has
created the table, the system state area is changed from
start to real-time. Server and client SCRAMNet+
nodes are programmed to monitor the system area,
notice the state change, and proceed to search the table
for blocks containing information for them.

Synchronous Communication
The framework system software is designed to operate
the VME processors as I/O subsystems that are
configurable at runtime with the Onyx as the system
master. An example of this configurability would be
the addition of an analog-to-digital converter. A
properly jumpered card would be installed in a VME
subsystem and the data block added to the configuration
file read by the main host. The only software requiring
modification would be the main application on the host.
This architecture, used successfully throughout the
Langley simulation facilities, is also used in the TRF
environment.

An important characteristic of this system is that the
synchronous I/O data (such as analog and discrete) is
cycled at the rate and time demanded by the main
application. The main program on the SGI iterates at a
stable 50 Hz and provides frame start times within one
millisecond and thus, is suitable for numerical
integration and digital filter implementations. The
SynchronousChannel software hierarchy used by the
main application is shown in Figure 9. A
SynchronousChannel derived class such as
AnalogToDigitalChannel supports analog input for one
or more physical modules on a particular I/O
subsystem. Each module has sixteen inputs. The base
class provides common services while derived classes
provide details of processing for a specific type of
module. For an installation with two modules, input
lines are accessed individually via the derived class
using integers from 0 to 31. The ChannelBuilder is a
factory class that may optionally be used to create
SynchronousChannel objects and performs the details
of acquiring the SCRAMNet+ blocks, constructing
objects and processing error conditions.

Asynchronous Communication
Asynchronous communication types such as RS-232
and ARINC 429 protocols are often required in
simulations and the aircraft environment.
Communication channels for asynchronous type data
are also available using software implemented
specifically for that purpose. Figure 10 is the design of
the framework for an asynchronous communication
hierarchy that is used extensively. These template
classes provide a read/write interface (similar to UNIX
system I/O) to queues established in SCRAMNet+.
The ScramnetMemoryBlock, which is a specialized

12

American Institute of Aeronautics and Astronautics

1.0 Common Software
1.1 Systems

1.1.1 Hybrid GPS
1.1.2 Synthetic Instrument Landing System

1.2 Interfaces
1.2.1 Synchronous Communications
1.2.2 Asynchronous Communications
1.2.3 SCRAMNet Communications
1.2.4 Experimental Display Control Panel Interface

1.3 IFD Displays
1.3.1 Attitude Director Indicator Display for Left Side
1.3.2 Navigation Display for Left Side

2.0 Facility (Simulation) Specific Software
2.1 Systems

2.1.1 Aerodynamics Model
2.1.2 Propulsion Model
2.1.3 Fuel
2.1.4 Engine Model
2.1.5 Landing Gear Model
2.1.6 Effectors/Actuators/Servo Models
2.1.7 Hydraulics Model
2.1.8 Mass Model
2.1.9 B757 Mode Control Panel
2.1.10 Thrust Management System
2.1.11 Auto-pilot/Flight Director Model
2.1.12 Flight Controls System
2.1.13 GPS
2.1.14 Radar Altimeter
2.1.15 Air Data Computer
2.1.16 DME
2.1.17 IRS
2.1.18 VOR

2.2 Interfaces
2.2.1 RFD Cockpit Interface
2.2.2 IFD Cockpit Interface
2.2.3 Visual Scene Interface
2.2.4 Sound system Interface
2.2.5 Head-down Display Interface

2.3 IFD Displays
2.3.1 Attitude Director Indicator Display for Right Side
2.3.2 Navigation Display for Right Side
2.3.3 EICAS Displays (Upper & Lower)

2.4 RFD Displays
2.4.1 Primary Flight Displays (Left & Right)
2.4.2 Navigation Displays (Left & Right)
2.4.3 EICAS Displays (Upper & Lower)
2.4.4 Multi-functional Displays (Left & Right)

2.5 Onyx System Software
2.5.1 Supervisor
2.5.2 Device Driver

Figure 8. Work Breakdown Structure for B-757 Software System

13

American Institute of Aeronautics and Astronautics

1

 0 . . 1

AnalogToDigitalChannel

AnalogToDigitalChannel ()
AnalogToDigitalChannel ()
update ()
AnalogToDigitalChannel ()
getVoltage ()
getRaw ()
getNormalized ()
displayToStream ()
scale ()
operator = ()
normalize ()

SynchronousChannel

SynchronousChannel ()
SynchronousChannel ()
update()
SynchronousChannel ()
getBytesPerModule ()
getChannelCount ()
getChannelsPerModule()
getModuleCount ()
getName ()
getBaseAddress ()
getSizeInBytes ()
isInvalidChannelIndex ()
operator = ()DigitalToAnalogChannel

DiscreteInputChannel

VdtInputChannel

VdtOutputChannel

SynchroToDigitalChannel

DiscreteOutputChannel

DigitalToSynchroChannel

DigitalToSynchroChannel ()
DigitalToSynchroChannel ()
update ()
DigitalToSynchroChannel ()
putAngularValue ()
displayToStream ()
scaleRadians ()
operator = ()
nearestInteger ()

ChannelBuilder

instance ()
destroyInstance ()
makeAnalogToDigitalChannel ()
makeDigitalToAnalogChannel ()
makeSynchroToDigitalChannel ()
makeDigitalToSynchroChannel ()
makeDiscreteInputChannel ()
makeDiscreteOutputChannel ()
makeVdtInputChannel ()
makeVdtOutputChannel ()
displayToStream ()
ChannelBuilder ()
ChannelBuilder ()
ChannelBuilder ()
operator = ()
acquireMemoryBlock ()

Figure 9. Synchronous Communications
Design

MemoryBlock

Aircraft Wing

 B-757

“has a”
relationship

“is a”
relationship

14

American Institute of Aeronautics and Astronautics

ScramnetMemoryBlock

AsynchronousChannelBase ScramnetReader

AsynchronousInputChannel AsynchronousOutputChannel

AsynchronousChannel

1

1

1

1

1

1

Figure 10. Asynchronous Communication Hierarchy Design

Aircraft Engine

 B-757

“has a”
relationship

“is a”
relationship

Fuel

“uses”
relationship

15

American Institute of Aeronautics and Astronautics

MemoryBlock, is used because it provides methods to
transmit interrupt and receiver interrupt enable
SCRAMNet+ memory locations.

A good application example would be the output half of
a simulated Aircraft Communication and Reporting
System (ACARS). The main application would
construct an AsynchronousOutputChannel to an
ARINC transmitter and invoke the ::write() method to
transmit encoded data-link messages. During
initialization, the I/O subsystem would acquire the
ScramnetMemoryBlock from the SCRAMNet+ table,
construct an AsynchronousOutputChannel, and spawn a
task that sleeps until an interrupt is generated by the
main application ::write(). The interrupt causes the task
to wakeup, read the data in the channel, and transmit
the data on the selected transmitter.
AsynchronousChannels are often associated with, but
not limited, to hardware I/O.

Communication using the ARINC 429 protocol9 is an
important capability for the TRS and for the integration
of flight hardware into the simulation environment.
The majority of data available on the 757 is from the
digital system buses from the various basic B-757
systems. The LaRC simulators incorporate flight
management computers, flight control computers, mode
control panels, and various other devices that require an
ARINC 429 protocol. Figure 11 depicts a group of
classes built-up from framework communication that
provides main applications the ability to establish a
channel of ARINC 429 communication to an arbitrary
node and device. The notion of a client/server
relationship resulted in two primary components of the
architecture being the ArincAllocator and the
ArincServer. The ArincAllocator provides services to
applications that convey the communication
configuration to the I/O subsystem. Details for the
communication are passed to the server through a
SCRAMNet+ memory block specific to that purpose.
The server task is spawned on the PowerPC I/O
subsystem during system initialization and services
requests for input and output by constructing and
linking objects to accomplish the communication.

The design also attempts to keep the content of the
communication separate from the mechanism. Other
challenges for the design are the wide variety of
ARINC specifications that use the ARINC 429 protocol
for the underlying communication. Conversions of data
to and from binary ARINC format are provided by
conversion objects created with data from an
ArincDatabase class. These objects have overloaded
methods with float type arguments that return ARINC
format words, and ARINC format arguments returning
float types. The diagram in Figure 12 shows the

ILSOutput class that is a typical ARINC bus
implementation class. ILSOutput contains an
ArincChannel by aggregation and uses
ConversionFactory to obtain references to Convert
objects during construction. Multiple ILSOutput
objects may be created to receive and transmit within
the same application.

TRS Application Design and Flight Test Projects
The primary baseline functions provided by the ARIES
TRS software include primary and navigation flight
deck displays, integration with a flight management
computer, and a GPS based instrument landing system
or GLS. The GLS is capable of providing guidance
signals to the flight control computers during coupled
approaches flown by the basic B-757 autopilot system.
A key part of the GLS system is the implementation of
a third order complimentary filter combining GPS
position and inertial accelerations from the ships
inertial reference system providing high rate position
updates.

Joint Runway Friction Project10--The Joint Runway
Friction Project was the first deployment using the new
TRS on the ARIES B-757 and followed shortly after
the TRS baseline instrument check flight. The role of
the TRS on ARIES was to compute coefficients of
friction, stopping distances, and kinematics for the
accumulation of brake energy for two aerodynamic
configurations. This first project encapsulated the
various computations in a class with an interface for
controlling inputs and outputs shown in Figure 13. An
object of this type was created in AircraftBuses to
which methods were added to supply inputs, as well as
retrieve, display and record outputs. The
aircraftBuses::update() method invoked the
::computeRunwayFriction() method as another internal
helper method. The B-757 software simulation package
and the RSIL lab were used to test the computation of
the kinematics prior to local flight tests.

Airborne Information for Lateral Spacing (AILS)11--
The Airborne Information for Lateral Spacing Project
flight test followed and was the culmination a multi-
year project jointly involving NASA Langley and
Honeywell Incorporated. The premise for the flight test
was alerting-algorithms operating in a red-label Traffic
Collision Avoidance System (TCAS) computer
programmed to receive Automatic Dependence
Surveillance-Broadcast (ADS-B) aircraft state
information from another aircraft on a closely-spaced
parallel approach. A full simulation using the IFD
simulator provided pre-recorded data of an aircraft on a
parallel approach to the RSIL in addition to ARINC bus
data simulating a Mode-S transponder and GPS

16

American Institute of Aeronautics and Astronautics

ArincServer
arinc_modules[] : ArincModule = NULL
out_channels[] : ArincOutputChannel *
receiver_tasks[] : task_id
 : Logical View::ArincModule
 : Logical View::ArincOutputChannel
 : Logical View::ArincReceiver
 : Logical View::ArincOutputStream

addInputChannel()
addOutputChannel()
getArincModule()
updateOutputChannels()
addOutputStream()
addInputStream()
terminate()
initialize()
run()
initializeCommunication()
putScramNetAddress()

ArincModule

repeatingMessage()
blockMessage()
updateMessage()

ArincOutputChannel
scramnet_base_location : void *
arinc_module : ArincModule = NULL
channel_information : ArincChannel *
 : Logical View::ArincChannel

updateChannel()
initializeChannel()

ArincInputChannel
scramnet_base_location : void *
channel_information : ArincChannel *
 : Logical View::ArincChannel

processData()

Arinc429Packet

ArincOutputStream
transmitter_number : unsigned
buffer : AsyncInputChannel
arinc_module : ArincModule
scramnet_base_location : void*
 : Logical View::Asynchronous

InputChannel

AsynchronousInputChannel

1

1

ArincInputStream
scramnet_base_location : void *
receiver_number : unsigned
 : Logical View::Asynchronous

OutputChannel

AsynchronousOutputChannel

ArincReceiver
data_handlers[] : DataHandler = NULL
arinc_device : ArincModule = NULL
iterate : bool = true
 : Logical View::DataHandler

receiverTask()
installHandler()
terminateTask()

DataHandler

processData()

1

0..16

ArincChannel
word_count : unsigned
equipment_id : unsigned
channel : unsigned
data[1] : Unsigned32Bit
arinc_card : unsigned

1

1

 vxWorks
 task

 vxWorks
 task

1

1

1

0..3

1

0..48

1

0..3

Figure 11. Subsystem ARINC Communication Components

Aircraft Engine

 B-757

“has a”
relationship

“is a”
relationship

Fuel

“depends on”
relationship

17

American Institute of Aeronautics and Astronautics

BinaryConvert

Arinc429Packet

ArincTableEntry

ArincChannel

ArincAllocator

allocateArincChannel(arinc_channel)

ILSOutput(node_name, transmitter, argname, driver, device)
ILSOutput(node_name, device, receiver)

getRunwayHeading()

putRunwayHeading()

ConversionFactory

create(equipment, label, sdi)

The database contains the
conversion details, descriptive
strings and transmit rates for
periodic type data.

Applications can construct packet
objects, conversion objects, or use
the factory for 'standard'

A typical bus interface objec
t may be constructed to
transmit or receive.

The allocator implements the
table driven data for the Arinc
Server on the I/O subsystem.

Figure 12. ILS Output Class, Another ARINC Communications Design

Aircraft Engine

 B-757

“has a” reference
relationship

“is a”
relationship

Fuel

“depends on”
relationship

“has a” value
relationship

18

American Institute of Aeronautics and Astronautics

T r f F m c H a n d l e r

FlightMain Application

T i m e F r e q u e n c y P r o c e s s o r

H y b r i d G p s I r u

S y n t h e t i c I l s

A s h t e k M o d e s

P r i n c i p l e o b j e c t s

c o n s t r u c t e d i n T R S m a i n

p r o g r a m .

R u n w a y F r i c t i o n D a s

B r a k i n g E n e r g y

T r f D a s B a s e l i n e

T r f G r a p h i c s H a n d l e r

A i r D a t a C o m p u t e r O u t p u t

(f r o m L a S R s + + F r a m e w o r k)

A s h t e k D a t a

A i r c r a f t B u s e s

T y p i c a l A R I N C b u s
i n t e r f a c e c l a s s .

P r i m a r y s o u r c e o f o b j e c t s

p r o v i d i n g s h i p s s y s t e m d i g i t i a
l b u s d a t a .

Figure 13. First TRS Baseline Design

Aircraft Engine

 B-757

“has a” reference
relationship

Fuel

“has a” value
relationship

“is a”
relationship

“uses”
relationship

19

American Institute of Aeronautics and Astronautics

Navigation Satellite System (GNSS). The simulation
side of the RSIL was outfitted to transmit ADS-B
messages to the TCAS line replaceable unit (LRU)
computer using a radio frequency (RF) signal generator.

The TCAS inputs and outputs required for the flight test
were connected to the TRS side of the RSIL. Figure 14
is the design used in the TRS and shows the
AilsHandler containing four objects required for the
periodic ARINC I/O with the TCAS each containing an
ArincChannel. The TcasVapsInterface is a specialized
class providing input processing of asynchronous 'track
file' data from the TCAS for delivery to the Virtual
Prototypes Incorporated’s Visual APplicationS builder
(VAPS) graphics process which in this case was a
modified navigation display. The AilsHandler object
was created in the main program at the same level as
AircraftBuses for accessibility to the graphics and data
recording components.

Year 2000 Flight Experiments
The level of activities for Year 2000 for the ARIES B-
757 airplane was elevated and included multiple
projects. Each of these projects were developed
separately and then integrated and tested in the RSIL
environment. There were two software releases
operated during flight tests on ARIES in 2000. Adding
several new projects, eliminating old projects and
managing a release configuration became complex.
The first effort to partition research projects from the
baseline research system was the introduction of a new
class, ResearchSystems, with the purpose of
constructing and containing the project classes. Figure
15 illustrates the TRS design for Year 2000.

Community Noise Abatement Program--The B757
Community Noise Abatement Program or the Aircraft
Noise Prediction Program (ANOPP) flight test was a
rapidly developed project for flight test activities
supporting ground-based sound instrumentation.
Project development occurred early in the year parallel
with another flight test project. The ANOPP flight test
requirement was for the ARIES B-757 to fly accurate
ground tracks, with specific vertical path trajectories
over microphone stations in approach and take-off
configurations. Additionally it was desired to control
the take-off/go-around engine power to derated-thrust
settings not available from the basic B-757 system
thrust management computer. The challenge in this
circumstance was completing the checkout of the
simulated thrust management computer while testing
the TRS implementation of the concepts to be used for
lateral path and thrust management during the flight
test. Figure 16 illustrates the ANOPP Design.

Runway Incursion Prevention System (RIPS) and Hold
Short Advisory Landing Technology (HSALT)--RIPS
and HSALT were sister projects that consisted of a
head-down airport diagram and a multi-mode head-up
display running as graphics processes on the
Application Onyx computer and driven by the TRS
from a common shared memory segment. The RIPS
airport diagram depicted real-time up-linked airport
traffic, ADS-B traffic, Controller Pilot Data Link
Communication messages, and runway incursion alerts
from two airborne sources and a ground source. The
implementation relied heavily on the baseline
communication mechanisms. The project was
developed as a simulation-only project after which the
software was transferred verbatim to the TRS.

Synthetic Vision Display Concepts (SVDC)--The
SVDC project demonstrated photo-realistic and
synthetic out-the-window imagery on a large format flat
screen mounted on the instrument panel in front of the
test subject pilot and a head-up display. The imagery,
which was a separate software effort, was produced by
PCs using high-end graphics cards. The TRS supplied
data to the PCs that used SCRAMNet+ cards and a
version of the framework SCRAMNet+ hierarchy
ported to the Windows NT environment.

Weather Accident Prevention (WxAP)--The WxAP
program uses data from the basic B-757 body-mounted
accelerometers and digital system sensors as inputs to
algorithms that compute in-situ turbulence metrics for
correlation with experimental weather radar. The
project was planned from the start to undergo initial
implementation and testing in the simulation and then
transferred to the RSIL/TRS environment. The design
approach was to have the WxAP hierarchy mediated by
a simulation-specific class and a TRS-specific class.
Final testing prior to flight tests included recording data
in the simulation and in the RSIL/TRS during the same
run and co-plotting the results.

Year 2001 Flight Experiments
The activities for Year 2001 will include additional
flight tests for SVDC and WxAP projects. The
software development is largely the expansion of the
requirements for the existing projects. However, during
the interlude, a design was added to the TRS that assists
in managing the flux of projects and reduces the
workload when shifting the mix of projects for a
software release. The design as shown in Figure 17
modifies the existing ResearchSystems class to include
and Standard Template Library (STL) vector of
references to ResearchProject objects. Projects are
derived from ResearchProject and inherit the common
interface on which ResarchSystems operates as it
iterates on the STL vector. The details for the

20

American Institute of Aeronautics and Astronautics

AILS IO in TRS

ArincChannel

ArincStream

GnssuBus

11

XTBus

11

TcasToTest

11

TestToTcas
11

TcasVapsInterface
11

VapsDriver
(f r o m F r a m e W o r k)

11

AilsHandler
11

11

11

TrfMainWindowAilsGlobals

GUI
Support

Figure 14. TRS Software Design for AILS

Aircraft Engine

“has a” reference
relationship

Fuel
“has a” value
relationship

“is a”
relationship

“uses”
relationship

 B-757

21

American Institute of Aeronautics and Astronautics

This class manages the
In-Situ algorithms

WxAP in TRS

WxRadarBus

ResearchSystems
(from Baseline)

WxapHandler

WxapHandler()
WxapHandler()
initialize()
~WxapHandler()
update()
operator =()

WxapDasOutput
(from TRS WxAP)

TurbulenceInSituAlgorithm

WxapAlgorithmHandler

WxapAlgorithmHandler()
~WxapAlgorithmHandler()
initialize()
update()

AirDataComputerOutput
(from Baseline)

IrsOutput
(from Baseline)

WxRadarBusHandler

$ volts_to_gs : const double

WxRadarBusHandler()
WxRadarBusHandler()
update()
~WxRadarBusHandler()
operator =()

0..1

1
-radar_bus

0..1

1

0..1

1
-radar_bus_handler

0..1

1

FmcInput
(from Baseline)

NCARTurbulenceInSituAlgorithm

getEpsilon()
evaluate()
initialize()

One of five turbulence
algorithms.

Figure 15. Year 2000 TRS Software Design for RIPS/HSALT/SVDC/WxAP

Aircraft Engine

“has a” reference
relationship

Fuel

“has a” value
relationship

“is a”
relationship

“uses”
relationship

 B-757

22

American Institute of Aeronautics and Astronautics

RadioAltitmeterOutput

getRadioHeight()
getBusValueByLabel()

AircraftBuses

use_anopp_cutback_epr : bool
cutback_epr : float

overwriteFmcEprData(cutback_epr : float, overwrite : bool)
update()
tansferFmcDataToPsp()

TrfFmcHandler

epr_reference : float
use_research_epr : bool
anopp : bool
research_tmc : TmcArincOutput

enableResearchEpr()
putEprReference()

TrfGraphicsHandler

maximum_pitch : float
maximum_pitch_ncd : bool

putMaxPitchReference(degrees : float, ncd : bool)

ScramnetReader

ResearchSystems

aircraft_buses
fmc_handler
graphics_handler
noise_abatement : AnoppHandler

ResearchSystems()
~ResearchSystems()
update()
getScramnetBlockAddress()

Constructed in the main program and
supplied with reference to other main

Methods and attributes shown for
baseline classes are only those
added or used for ANOPP.

Communicaity Noise Abatement (ANOPP)

IndependentVariableOne

DependendVariableOne

getRatingTwoOperate()
getClbModeOperate()
getGAModeOperate()
getEprActualLeft()
getEprActualRight()

FmcInput

getEprTarget()
getGrossWeight()
copyChannelContents()
putEprTarget()

AnoppHandler

AnoppHandler(fmc_input, radio_altitmeter, tmc)
~AnoppHandler()
update() : void
alterTmcInputToFmc() : bool
alterOutputFromFmc() : bool
getPerformCutback() : bool
getCutbackEpr() : float
getPitchReference() : bool
computePitchGuidance()
registerGuiPanel(anopp_handler : AnoppHandler)

Figure 16. TRS Software Design for ANOPP

Aircraft Engine

 B-757

“has a” reference
relationship

Fuel
“has a” value
relationship

23

American Institute of Aeronautics and Astronautics

RunwayFriction

RunwayFriction()
RunwayFriction()
update()
~RunwayFriction()
saveDataToFile()
getBrakingEnergy()
updateScramnetBlock()
recordRunwayFriction()
createGuiPanels()
operator =()

SvsHandler

SvsHandler()
SvsHandler()
putDeclutterDiscrete()
~SvsHandler()
putBetaVane()
putVref()
putVmin()
putGeoidCorrection()
update()
putHybrid()
printTcasTargets()
registerGuiPanel()
transferTcasData()
sendDummyTcasTargets()
operator =()

WxapHandler

WxapHandler()
WxapHandler()
getWxapAlgorithmHandlerReference()
~WxapHandler()
update()
initializeDataRecording()
saveDataToFile()
operator =()

ResearchSystems

$createInstance()
~ResearchSystems()
$getInstance()
update()
getTcasDisplayBusReference()
initializeDataRecording()
recordingOff()
isRecordingOn()
saveDataToFile()
getTimer()
createResearchProjects()
getScramnetBlockAddress()
computations()
ResearchSystems()
ResearchSystems()
operator =()

1

0..1

1

+instance

0..1

ResearchProject

ResearchProject()
ResearchProject()
update()
~ResearchProject()
saveDataToFile()
erase()
setRecordingOn()
setRecordingOff()
isRecordingOn()
operator =()

1

0..*

1

0..*

AtassProject

2002 project

Figure 17. TRS Design with SVDC/WxAP Projects for Year 2001

Aircraft Engine

 B-757

“has a” reference
relationship

Fuel

“has a” value
relationship

“is a”
relationship

“uses”
relationship

24

American Institute of Aeronautics and Astronautics

construction of projects are isolated to the
ResearchSystems::createResearchProjects which has
implementation in a separate compilation unit. Projects
are maintained in separate directories, with individual
build scripts for project libraries. The TRS build script
controls which projects are linked and constructed. The
potential exists to configure runtime project
instantiation from an initialization file or from
command line options.

Conclusion
The process to satisfy the simulation-to-flight concept
has been implemented effectively as evidenced by
research results from various past experiments. The
TRS software design has also gone through an
evolution process to increase the flexibility and
efficiency to support multiple projects during a single
integrated flight experiment. The simulation-to-flight
concept research processes will be continuously
improved for long term success.

Acknowledgements
The authors gratefully acknowledge the significant
contributions of Charlie Knox, Carey Buttrill, and
Jacob Houck from the NASA Langley Research Center
Airborne Systems Competency for providing valuable
reviews and critics for this paper. The efficacious
guidance provided by Simon Chung from the NASA
Scientific and Technical Information (STI) Program
Office in navigating through the Agency’s STI systems
is also greatly appreciated.

References

1 Terminal Configured Vehicle Program, Test

Facilities Guide. NASA SP-435
2 Outlaw, Bruce K. E.: Description of the

Experimental Avionics Systems Integration
Laboratory (EASILY) . NASA TM 109072, 1994

3 Cleveland, Jeff I.; Herndon, Sonia S.; Houck,
Jacob A.; Kibler, Kemper S.; Meetze, Lemuel E.;
and Simmons, Harold I.: Real-Time Simulation
User’s Guide. 1997

4 Knox, C.E.: The Requirements Document for the
Transport Research System, Version 3.4. NASA
Langley Research Center, 1997.

5 Fisher, Bruce D.; and White, John J. II: New
NASA Transport Research Facilities to Support
Research Flight Operation in Present and Future
ATC Environments. 1997 World Aviation
Congress, October 13-16, 1997

6 Smith, R. Marshall: A Description of the Cockpit
Motion Facility and the Research Flight Deck
Simulator. AIAA 2000-4174, Modeling and
Simulation Technologies Conference and Exhibit ,
Aug. 14-17, 2000

7 Leslie, Richard A.; Geyer, David W.; Cunningham,

Kevin; Glaab, Patricia C.; Kenney, P.S.; and
Madden, Michael M.: LaSRS++ -- An Object-
oriented Framework for Real-time Simulation of
Aircraft. AIAA 1998-4529, Modeling and
Simulation Technologies Conference and Exhibit ,
Aug. 10-12, 1998

8 Gamma, Erich; Helm, Richard; Johnson, Ralph;
and Glissades, John: Design Patterns Elements of
Reusable Object-Oriented Software. Reading
Massachusetts: Addison-Wesley, 1995, pp. 81-127

9 ARINC Mark 33 Digital Information Transfer
System (DITS) Part 1. ARINC Specification
429P1-15, Sep. 1, 1995

10 Yager, Thomas J.: Aircraft and Ground Vehicle
Winter Runway Friction Assessment. NASA TM
1999-209142, 1999

11 Rine, Laura L.; Abbott, Terence S.; Lohr, Gary W.;
Elliott, Dawn M.; Waller, Marvin C.; and Perry, R.
Brad: The Flight Deck Perspective of the NASA
Langley AILS Concept. NASA TM 2000-209841,
2000

