
1

American Institute of Aeronautics and Astronautics

IMPLEMENTING DYNAMIC SYSTEM MODELS IN THE

ASSET SIMULATION FRAMEWORK

Stephen D. Derry*, Jeffrey Maddalon*

NASA Langley Research Center

24 W. Taylor Road

Hampton, VA 23681

Abstract
The Aircraft System Simulation Environment and Tool-

kit (ASSET) project is being undertaken as a proof of

concept, aimed at demonstrating a rapid model

prototyping and modification capability by utilizing

modern software technologies and design concepts.

Initially, the project is focused on a self-contained batch

simulation, but it is designed to ultimately run embed-

ded within other software environments, including real-

time. This report focuses on the design and implemen-

tation of the model software, which strictly follows a

block-diagram design paradigm. The initial implemen-

tation, a six-degree-of-freedom simulation of an F-16

airplane, is presented, along with current status and

near-term plans. ∗

Introduction
NASA Langley Research Center utilizes flight simula-

tion, both batch and real-time (pilot in the loop), to sup-

port research in a number of disciplines, ranging from

control system development and handling qualities

evaluation to human factors. Because these simulations

are used for research rather than operational purposes

(such as training), they are subject to frequent change.

∗ Computer Engineer, Systems Development Branch,

Airborne Systems Competency.

Copyright  2000 by the American Institute of Aero-
nautics and Astronautics, Inc. No copyright is asserted
in the United States under Title 17, U.S. Code. The
U.S. Government has a royalty-free license to exercise
all rights under the copyright claimed herein for Gov-
ernmental purposes. All other rights are reserved by the
copyright owner.

Several of the research disciplines require frequent

modifications to the simulation model itself, to either

the aircraft plant, the associated control system, or both.

To support a rapid design iteration rate, the researcher

should be able to modify the model and test the simula-

tion in a desktop workstation environment without the

support of software specialists. This desktop batch

simulation must be capable of producing trim solutions

and time-history evolutions; additionally, linearized

models, possibly of reduced order, must be extracted

from the full non-linear model. Finally, the non-linear

model must be portable to a real-time environment for

piloted simulation and/or flight test, preferably without

recoding.

ASSET will attempt to demonstrate rapid model soft-

ware development and modification in a desktop work-

station batch simulation environment that supports the

three primary operations described above (trim, lineari-

zation, and time-history evolution).

ASSET Software Overview
To facilitate development of simulation model software

by non-software experts, ASSET is designed to be

functionally de-coupled and easy to learn. In this con-

text, functional de-coupling refers to the design goal of

isolating the software context in which models operate.

Model software can then be developed and/or modified

without knowledge of the context in which the model is

to be run (i.e. whether the model is a stand-alone system

or part of a larger system), and with little knowledge of

the software architecture of the other parts of the AS-

SET framework. Functional de-coupling should also

enhance the re-usability of the software.

AIAA-2000-4393

2

American Institute of Aeronautics and Astronautics

Object-oriented design techniques are employed

throughout the ASSET project. To maintain simplicity

of design and ease of learning, the class hierarchy (lev-

els of inheritance) is intentionally kept shallow – typi-

cally two or three levels deep at the most.

ASSET uses the Java programming language [1]. Java

was chosen primarily for its portability, support for the

object-oriented design paradigm, and ease of learning,

as well as the breadth of industry support and the avail-

ability of already-developed software (such as vector

and matrix classes and graphical user interface founda-

tional classes).

ASSET consists primarily of six major components:

applications, models, a data store, data collectors, a user

interface, and the framework of common software. A

given simulation project will typically have a unique

application and models, but use standard ASSET

classes for the remaining components. This paper fo-

cuses on the ASSET concept of a model and its soft-

ware realization. A companion paper [2] discusses the

data store and the data collectors.

Initially, ASSET is targeted to run in a stand-alone

batch environment, providing a desktop (non real-time)

simulation environment with a graphical user interface

(GUI). Long-term plans are to embed ASSET into

other simulation software environments, including

commercial products in a desktop batch environment

and, ultimately, real-time environments for piloted

simulation. Once ASSET is embedded into a simula-

tion environment, then models developed for ASSET

will run in that environment.

When embedding ASSET models into a non-ASSET

environment, the embedded ASSET components will

typically include the models, data store, data collectors,

and portions of the framework, along with interfacing

software specific to the environment in which the AS-

SET components are embedded.

The design of ASSET allows for it to be embedded into

a real-time environment, although ASSET itself does

not provide a real-time environment. To this end, AS-

SET does not create any objects in the run-time portion

of the software, which eliminates the necessity of run-

ning garbage collection in real-time.

Garbage collection is a mechanism used by Java to re-

claim unused memory to make it available for the crea-

tion of new objects. Garbage collection is undesirable

for real-time operations because it is time consuming

and its invocation generally occurs at unpredictable

times.

One final aspect of ASSET is that it is designed not just

for flight simulation. While many components of the

framework are specific to flight simulation (equations of

motion, etc.), ASSET can be used to support the mod-

eling and simulation of any set of dynamic systems.

Software Implementation of Models

Basic description and class design

The Model super-class is the basic abstraction for all

mathematical models in ASSET. A Model object rep-

resents a block in a block diagram. Models have inputs,

outputs, and perhaps states. Note that a block diagram

typically depicts the inputs and outputs for the individ-

ual blocks, but the states are not explicitly shown.

Similarly, the input and output vectors for ASSET

Models are visible to the block’s “owner”, but the states

are generally not. The “owner” of a model object is

usually the object which created it.

All classes which implement models are sub-classes

(descendants) of the Model super-class, either directly

or indirectly. The Model super-class manages certain

bookkeeping functions, such as mode and time, whereas

the sub-class implements the mathematical state and

output equations that govern the behavior of the model.

All models have essentially the same software interface.

Most of the methods defined for a model are imple-

mented in the super-class; the remaining methods de-

fined in the sub-class usually over-ride methods of the

super-class. Rarely are additional, model-specific,

methods needed. The uniformity of the software inter-

face for all models simplifies the software design, both

for the models themselves and the upper layers of soft-

ware that use the models.

Signals and model interface vectors

Model input and output vectors are implemented as

Java arrays of double’s, with one double for each

input and output signal. Each of the signals has a

3

American Institute of Aeronautics and Astronautics

unique name, and both the names and values for the

input and output signals are accessible to the model’s

owner. To improve run-time execution performance,

signal name lookups are typically done only once, at

construction time, and the corresponding indices are

retained for use during run-time.

A model may also contain states, which are defined and

maintained by the model and not generally visible out-

side. ASSET supports both continuous and discrete

states, and a given model may contain either or both

types. The state vectors are also implemented as arrays

of double’s with unique names for each state. State

and state derivative vectors are maintained for the con-

tinuous states, whereas state and next-state vectors are

maintained for discrete states. Special methods in the

Model super-class provide access to the state-related

vectors, primarily to support linear model extraction;

these methods are not intended for general use.

An additional interface, the parameter vector, is used by

the application to pass signals to the model without in-

tervention by the model’s owner. These parameters can

be used to adjust gains, etc. for control systems, or to

trigger failures or other anomalous events.

Finally, a model may select certain of its quantities to

be sampled for recording and analysis purposes; these

may include internal signals that are not otherwise visi-

ble. The sampling and recording are accomplished via

the data store and data collectors and are described in

[2]. Other than defining which of its quantities are to be

sampled, the model sub-classes do not participate in the

sampling process.

Units

All quantities in ASSET are internally maintained (i.e.

in variables) in a set of coherent internal units. A set of

units is coherent if it has exactly one unit for each type

of quantity, and is mutually related by multiplication

and division without conversion factors [3]. For exam-

ple, the area unit would be the distance unit squared,

and the unit of velocity would be the distance unit di-

vided by the unit of time.

The modeler should make no assumptions about what

actual units are used internally–as long as all quantities

are maintained in internal units, the results will be con-

sistent. Whenever a numerical quantity is used, whether

as an input, output, or a hard-coded constant, the corre-

sponding unit conversion must be performed so that the

quantity is stored internally with the correct coherent

unit.

ASSET can be configured to use either of two internal

coherent unit systems: the International System of Units

(SI) [3] or a customary set of units based on the foot,

slug, second, and degree Rankine. As long as all unit

conversions are properly specified, the actual selection

of the internal unit system is transparent and arbitrary.

The SI system is generally used.

Embedding models

Just as a block in a block diagram may itself be speci-

fied as a lower-level block diagram, an ASSET model

may embed models within it. In this case, the embed-

ded model is a separate object which is “part of” the

containing model. The containing model uses the same

interface (input and output vectors, etc.) and methods to

communicate with the embedded model.

The software that implements the embedded model has

no dependency at all on the containing model. This

means that models may be designed with no knowledge

of the context(s) in which they are to be used, whether

they are to stand alone or to be part of a larger system.

This aspect of ASSET’s design facilitates testing as the

model software is not changed between unit testing and

incorporation into a larger system. It also facilitates re-

use since the model software is not sensitive to its con-

text.

A model’s states are often contained in its embedded

models. The ASSET framework will include basic

models, such as integrators and transfer functions,

which are typically employed to manage the states of a

larger model. Due to the uniform model interface, it is

transparent to a model’s owner whether the model’s

states are contained directly in the model or within em-

bedded models. To maintain this transparency, the spe-

cial methods (required to support linearization) for ac-

cessing and manipulating a model’s state vector are

recursive: they operate on all states contained in the

model itself and in all embedded models.

4

American Institute of Aeronautics and Astronautics

Each model is given a name by it’s owner; this name is

unique among its siblings (i.e. among all models created

by the same owner object). Each model also has a hier-

archical name which is unique among all models de-

fined in the system. The hierarchical name for a model

is its given name appended to the hierarchical name of

its parent (containing) model, if any. For example, the

name of an aileron model contained within a standalone

model of an open-loop F16 aircraft might be

“F16OpenLoop.Aileron”.

Model execution cycle

A model execution cycle starts with the model’s owner

establishing the appropriate quantities in the model’s

input vector. The owner then invokes the runModel()

method which is defined in the Model super-class. The

runModel() method performs the following actions, if

required, depending on the current mode (modes are

described in a separate section below) and other model

settings:

1. Advance time

2. Propagate states to the new time by invoking the

sub-class method propagate()

3. Invoke the sub-class method calculateModel()

4. Invoke model sampling via the DataStore

After this completes, the model’s current outputs are

available in its output vector.

The calculateModel() method, which is imple-

mented in the sub-class for each specific type of model,

begins by initializing the model’s states if required for

the current model mode. The initial values for the states

are determined either by forcing steady-state conditions

based on the current inputs, or by utilizing special input

signals which serve solely to provide state initialization

data from outside the model (see Model residualization

below). After the states are initialized (if necessary),

the primary model calculations are performed: state

derivatives for continuous states, next values for dis-

crete states, and model outputs. These calculations

should be the same, regardless of the model mode. This

helps insure that the model behavior is consistent be-

tween modes by minimizing special “reset” code. If the

model embeds other models, the runModel() method

should be invoked on the embedded models.

The propagate() method, which is also implemented

in the sub-class for each type of model, propagates the

states to the next time step. Continuous states are inte-

grated using the state derivative calculated for the pre-

vious step (and perhaps other data, depending on the

specific integration method used), and the discrete

states are advanced to their next values which were also

calculated in the previous step. The propagate()

method need only be defined if the model directly

maintains its own states. Frequently, states are embed-

ded in standard models such as filters and integrators, in

which case an implementation for propagate() is not

necessary.

The ASSET framework currently includes a small set of

standard integrators and transfer functions which are

implemented using single-pass algorithms suitable for

use in a real-time environment. This set of integrators

and transfer functions will be expanded as necessary,

and it is anticipated that these standard models will be

used to maintain most states.

Time management

A variety of time and mode management services are

provided by the Model super-class. The primary time

management functions are the maintenance of the time

and time step for each model. The time step for top-

level models (those which are not embedded inside a

containing model) is established by the model’s owner.

By default, embedded models inherit the time step of

their containing model; however, the time step may be

set to a multiple or a sub-multiple of the containing

model’s in order to sub-rate or super-rate the model.

This capability allows different parts of the system to

run at different rates, transparently to the model and

application software.

Super-rating an embedded model means that several

cycles of the embedded model are run for each cycle of

the containing model. This is useful for modeling a

subsystem which contains higher frequency dynamics

than the full system without requiring the entire system

to be modeled at the smaller time step. Sub-rating is the

opposite: the embedded model is only evaluated once

for several cycles of the containing model. Sub-rating

is primarily provided to reduce execution time for sub-

systems whose dynamics are appreciably slower than

5

American Institute of Aeronautics and Astronautics

the system as a whole. To make sub-rating useful for a

real-time environment, a set of sub-rated models may be

phased. For example, a model of a twin-engine airplane

may run its engine models on alternating time steps.

Super-rating and sub-rating are handled entirely by the

Model super-class.

Modes

ASSET models can be in one of three modes: Initialize,

Steady, and Dynamic. When a model is in Initialize

mode, the states are initialized prior to the calculation of

the state and output equations, and time does not ad-

vance. In Steady mode, the states are initialized similar

to the Initialize mode, but time advances. In Dynamic

mode, time and states are advanced and integrated prior

to the calculations. Other than the state initializations

for the Initialize and Steady modes, the mode should be

transparent to the modeler and the model sub-class. In

addition to simplifying the software, this helps insure

consistent results.

The Initialize mode is used to establish and/or trim the

initial conditions, while the Steady and Dynamic modes

are used to produce a time-history evolution starting

from the initial conditions. A model in the Dynamic

mode will respond according to the dynamics described

by its state and output equations, while a model in the

Steady mode is forced to produce a steady-state re-

sponse as described in the next section (model residu-

alization).

To initialize the system, all models are placed in the

Initialize mode. To run the system (over time), all

models are placed in either the Dynamic or Steady

mode. Normally, all models will be set to Dynamic

mode; however, selected models may be placed in

Steady mode to reduce the complexity of the dynamics

being studied. For example, actuator or engine models

could be placed in Steady mode so that their steady-

state response is produced instantaneously while re-

moving their transient response. This can be used to

produce a reduced-order linear model of the aircraft.

While running (i.e. not initializing), the system as a

whole may also be suspended, which means that the

passage of time and propagation of states does not oc-

cur. While suspended, only the normal state and output

calculations, including (re)initialization of states if in

Steady mode, are performed by the runModel()

method. This feature is used to produce linear models

of the system by allowing the application to perturb

each state and input, in turn, and observe the system

response in the output vector and the state derivatives.

Special methods are provided by the Model super-class

to access the state and state derivative vectors for this

purpose. Note that although only the top-level model’s

inputs and outputs are visible, the state and derivative

vectors include the states and derivatives of all embed-

ded models.

Suspension and the special state vector access methods

could also be used to support the use of an external in-

tegration algorithm, although this has not been fully

designed yet. (Additional methods would be needed in

order to manually adjust the time and time step.) Such

external integration methods would be implemented

separately from the model and would allow the user to

provide alternate integration algorithms, including

multi-pass algorithms such as Runge-Kutta, possibly

with variable step size.

Model residualization

In ASSET, certain models are considered to be residu-

alizable, meaning that the states can be initialized such

that the model is placed in a steady-state condition for

the current inputs. Steady state condition is defined to

occur when the residual error is zero, where the residual

error is the root-sum-square of the continuous state de-

rivatives and the discrete state differences (next state –

current state).

This feature allows the user to optionally remove the

dynamics of selected residualizable subsystem models,

such as aircraft actuators, by placing the subsystem

models in Steady mode while the rest of the system is in

Dynamic mode.

One area of difficulty for determining a steady-state

solution is that some models contain implicit loops in

their state equations.1 A standard approach is to iterate

1 Implicit state equations occur when the state deriva-

tives are computed as functions of several quantities,

including the state derivatives or equivalent forms. This

6

American Institute of Aeronautics and Astronautics

the calculation of the states and derivatives until the

residual error is driven suitably close to zero.

Classes which implement residualizable models identify

themselves to the Model super-class as such. This en-

ables the super-class to automatically calculate the re-

sidual error and iterate the invocation of calculate-

Model() if the model is in Initialize or Steady mode.

Note that models which are not residualizable require

special inputs for initializing the states. Since these

states require external participation in their initializa-

tion, iterative calls to calculateModel() are not

performed on these models.

Signal wiring

One of the more time-consuming parts of writing soft-

ware for models in a block-diagram paradigm is the

passing of signals from one model to another, i.e. wiring

the connections. For example, ASSET’s model for the

aircraft rigid equations of motion has over two hundred

input and output signals.

ASSET provides several framework classes to assist

with this chore. One set of classes implement busses,

which aggregate a number of signals. Busses provide a

structure for managing the names for a group of signals,

and for mapping the names so that the two sides of the

“connection” can name the signals differently. Input,

output, state, and parameter vectors can be defined in

terms of busses as well as individual signals. Standard

busses are defined for basic aggregate quantities, such

as vectors, matrices, and quaternions, which are used

frequently and are composed of multiple signals. An-

other class, the Signal List, automates the transfer of

quantities between the interface vectors and primitive

data types which are used in the model code.

If a model can be described completely in terms of a set

of embedded models wired together, the Composite-

Model super-class can be used to gain significant lever-

age in the coding of such model classes. Composite-

Model, which is a sub-class of Model, manages the exe-

cution of such models. In this case, the model devel-

is common in aerodynamic models, where aerodynamic

coefficients are functions of the angle-of-attack deriva-

tive and pitch-rate derivative, for example.

oper merely has to define a sub-class of Composite-

Model with a constructor; no other methods need to be

defined in the sub-class. The constructor must create

the embedded models, establish their wiring and execu-

tion order, and describe the data which should be in-

cluded in the sampling. The CompositeModel super-

class provides the methods, such as calculate-

Model(), which are needed for run-time execution.

Standard algebraic models, such as gains, summers, and

limiters, have been added to the framework to support

the use of composite models.

External model interfaces

The block-diagram paradigm, with successive levels of

decomposition of a model into embedded models which

are “part of” the containing model, has its limitations

and cannot be used as a basis for all inter-model com-

munications. Namely, there is occasionally a need for

models which are not part of the same system to com-

municate (i.e. exchange data) with each other. For ex-

ample, consider the case of an aircraft and an atmos-

phere. Models can be built for each, but neither entity

is “part of” the other; each can exist without the other,

but the presence and characteristics of one has a great

influence on the behavior of the other!

ASSET uses the Java interface mechanism2 so that one

model can invoke specialized methods of another

model. This use of the Java interface adds flexibility to

the object-oriented design of the modeling software.

However, because it is a special-purpose mechanism, its

use is kept to a minimum to avoid excessive complexity

in the software design.

Early Implementation – F16 Simulation
The first substantial system to be simulated in ASSET is

a simplified F-16 model, described in [4]. This system

provides an illustrative example of a hierarchy of em-

bedded ASSET models with several external interfaces.

2 Java interfaces basically provide declarations of meth-

ods, including parameters and return types, without de-

fining the implementations of those methods. A Java

class can be declared to implement an interface, which

means that it must define an implementation for all of

the methods declared in the interface.

7

American Institute of Aeronautics and Astronautics

An object diagram for this system is shown in Figure 1,

and a class diagram is shown in Figure 2. Note that all

of the model classes are either sub-classes of Model or

CompositeModel. All of the states in this system are

maintained in the KinematicBody and Integrator ob-

jects.

The six-degree-of-freedom rigid-body equations of mo-

tion are implemented by the AircraftRigidEOM class,

which is a sub-class of CompositeModel. These equa-

tions are mathematically similar to those used in the

current piloted flight simulation framework at Langley,

LaSRS++. LaSRS++ is described in [5] and is written

in C++ using object-oriented techniques.

The DynamicRigidBody model receives as inputs the

external forces and moments acting on the aircraft as

well as the aircraft mass and inertia, and computes the

resulting inertial accelerations, both translational and

rotational. These signals are then passed to a Kine-

maticBody model, which maintains and propagates the

aircraft’s position and velocity states, both translational

and rotational. All of the kinematic states are refer-

enced to an earth-centered inertial Cartesian coordinate

system. KinematicBody has built-in integrators for

maintaining the rotational and translational velocities

(second-order Adams Bashforth) and translational posi-

tion (truncated Taylor series). It maintains the aircraft

attitude as a quaternion, which is propagated by a dis-

crete algorithm described in [6].

Both the DynamicRigidBody and KinematicBody

classes interface with an external World model for cal-

culating world-relative positions, velocities, and accel-

erations as well as the gravity vector. This allows a

variety of world models to be used without modifying

the basic dynamics classes. Currently, only a flat earth

model is implemented, but an ellipsoidal earth model

will be developed in the near future.

AirFlow is a CompositeModel which embeds an Air-

Path model and a GasDynamics model. The AirPath

model interfaces with an external Wind model to com-

pute the aircraft’s air-relative velocity, given its current

world-relative velocity. The GasDynamics model com-

putes such quantities as Mach number, equivalent and

calibrated airspeeds, dynamic and total pressures, and

total temperature. It takes the true airspeed as an input,

and interfaces with an external Atmosphere model to

obtain the ambient atmospheric characteristics (static

temperature and pressure, density and density gradient,

and speed of sound) at the current location of the air-

craft. The AirPathAccel model is used to calculate the

derivatives over time of the air-relative velocity, such as

the derivatives of the angles of attack and sideslip. It is

a separate model because the aircraft accelerations are

not available when the AirFlow model is invoked.

The current atmosphere model is based on the 1976

U.S. Standard Atmosphere, with provisions for local

temperature and pressure deviations. The only wind

model implemented at this point is one which provides

a constant wind. Additional wind models, along with

stochastic turbulence models, are anticipated to be

added in the future.

The simplified F-16 vehicle model is taken from [4],

and consists of several ASSET models, all embedded

within the F16OpenLoop class which is a Composite-

Model.

The aerodynamic forces and moments are computed in

the F16Aerodynamics class. The aerodynamics model

is non-linear and includes eighteen one- and two-

dimensional function table lookups with linear interpo-

lation.

The engine dynamics and thrust are computed in the

F16Engine class. The engine model includes three two-

dimensional thrust tables, and the engine dynamic state

is maintained by an ImplicitTrapezoidalIntegrator

which is embedded in the F16Engine model.

The three aerodynamic control surfaces defined in the

aerodynamics model are positioned by three instances

of the ActuatorOrder1 model (namely the aileron, ele-

vator, and rudder objects), each of which embeds an

ImplicitTrapezoidalIntegrator.

Any combination of the engine and/or actuator models

may be residualized in order to eliminate the effect of

their dynamics and thereby reduce the complexity of the

system as a whole. This feature may be used to reduce

the model for linearization and/or time-history evolu-

tion.

8

American Institute of Aeronautics and Astronautics

Finally, the aircraft mass and inertia properties, as well

as the location of the CG, are produced by the

F16MassGeometry model (the location of the CG is set

via a parameter to this model). The F16SumForces

model combines the forces and moments from the en-

gine and aerodynamics models and transforms the mo-

ment to the actual aircraft CG, and AircraftRigidEOM

is invoked to compute the dynamics of the aircraft.

This implementation consists of a system of twenty-two

ASSET models, including a hierarchy of nineteen mod-

els for the F-16 aircraft and three independent models

for the environment.

Current Status
The portions of the ASSET framework that are essential

for simulating 6-DOF rigid aircraft in a simplified envi-

ronment (flat earth with constant wind) have been de-

veloped, along with two simple aircraft models (the F-

16 mentioned above and a linearized model of a North

American Navion). The Navion model and the rigid

aircraft six-degree-of-freedom equations of motion have

successfully passed an initial validation by comparison

against an established simulation described in [7].

To date, ASSET development activities have taken

place on Windows NT 4.0 platforms using the Sun JDK

1.2.2 Java development environment, which includes a

just-in-time compiler. Performance measurements of

the F-16 model running on a 550 MHz. Intel Pentium

III with 256 MB of RAM have resulted in the following

times:

230 microseconds per step with sampling each step

195 microseconds per step without sampling

The entire F-16 model, including equations of motion,

was exercised each step, and the sampling recorded 210

signals. These tests were performed in a batch envi-

ronment with no user interface.

Near-term development plans include a graphical user

interface, implementation of simple control systems to

demonstrate closed-loop simulation, and incorporation

of trim and linearization capabilities. (Linearization has

already been demonstrated in ASSET on a simple linear

actuator model.) Following this, one or more additional

aircraft models which are of current research interest

will be developed in ASSET in order to assess the soft-

ware development effort required and to demonstrate

ASSET’s usefulness in supporting Langley’s research

mission.

Conclusions
Progress with ASSET to date demonstrates that the

block diagram paradigm is a useful design for simula-

tion model software, and that Java is a viable platform

for simulation software development. Follow-on efforts

will seek to determine ASSET’s effectiveness in reduc-

ing model software development time.

References
1 Arnold, Ken; Gosling, James. The Java Programming

Language, Second Edition. Addison Wesley Publishing

Company, Reading, MA, 1998. ISBN 0-201-31006-6.

2 Maddalon, Jeffrey; Derry, Stephen. Data Management

in the ASSET Simulation Framework. AIAA 2000-

4500. Modeling and Simulation Technology Confer-

ence, Denver, CO, August 2000.

3 Taylor, Barry N. The International System of Units

(SI). NIST Special Publication 330, National Institute

of Standards and Technology, August 1991.

4 Stevens, Brian L.; Lewis, Frank L. Aircraft Control

and Simulation. John Wiley and Sons, Inc., New York,

NY, 1992. ISBN 0-471-61397-5.

5 Leslie, R.; Geyer, D.; Cunningham, K.; Madden, M.;

Kenney, P.; Glaab, P. LaSRS++: An Object-Oriented

Framework for Real-Time Simulation of Aircraft.

AIAA-98-4529, Modeling and Simulation Technology

Conference, Boston, MA, August 1998.

6 Barker, Lawrence E. Jr.; Bowles, Roland L.; Williams,

Louise H. Development and Application of a Local

Linearization Algorithm for the Integration of Quater-

nion Rate Equations in Real-Time Flight Simulation

Problems. NASA TN D-7347. December 1973.

7 Jackson, E. Bruce; Manual for a Workstation-Based

Generic Flight Simulation Program (LaRCsim) Version

1.4. NASA TM-110164, May 1995.

A

Integrator

F16Engine

Integrator

Aileron

Integrator

Elevator

Integrator

Rudder

F16Aero F16MassGeometry

F16SumForces

FlatEarth

KinematicBody

DynamicRigidBody

ConstantWind

AirPath

AtmosphereUS76

GasDynamics

AirFlow AirPathAccel

AircraftRigidEOM

F16OpenLoop

m

FlatEarth D

ConstantWind

AtmosphereUS76

F16Engine

F16Aero

F16MassGeometry

F16SumForces
Figure 1. F-16 Model Object Diagra
mer

ynamicRigidBody

KinematicBody

AirPathAccel

AirPath

GasDynamics

ActuatorOrder1

IntegratorImplicit
Trapezoidal

Integrator

F16OpenLoop

AircraftRigidEOM

AirFlow

CompositeModel

Model
Figure 2. Model Class Diagram
9

ican Institute of Aeronautics and Astronautics

10

American Institute of Aeronautics and Astronautics

	IMPLEMENTING DYNAMIC SYSTEM MODELS IN THE ASSET SIMULATION FRAMEWORK
	Abstract
	Introduction
	ASSET Software Overview
	Software Implementation of Models
	Basic description and class design
	Signals and model interface vectors
	Units
	Embedding models
	Model execution cycle
	Time management
	Modes
	Model residualization
	Signal wiring
	External model interfaces

	Early Implementation – F16 Simulation
	Current Status
	Conclusions
	References

